
www.allitebooks.com

http://www.allitebooks.org

­­­­­­­­

JavaFX 1.2 Application
Development Cookbook

Over 80 recipes to create rich Internet applications with
many exciting features

Vladimir­Vivien

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JavaFX 1.2 Application Development Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Production Reference: 1170810

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-94-5

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Vladimir Vivien

Reviewers
Anghel Leonard

Luca Masini

Meenakshi Verma

Acquisition Editor
Sarah Cullington

Development Editor
Dhwani Devater

Reshma Sundaresan

Technical Editors
Aaron Rosario

Mohd. Sahil

Indexer
Hemangini Bari

Tejal Daruwale

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Proofreader
Clyde Jenkins

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vladimir Vivien is a software engineer living in the United States. Past and current
experience include development in Java and .Net for industries including publishing,
inancial, and healthcare. He has worked with a varied number of technologies including
user-facing GUI frontends and backend middleware. Vladimir enjoys taking part in open
source projects. He is the author of JmxBuilder a Groovy DSL for instrumentation and
management that is now part of the core Groovy project. Vladimir has presented some
of his ideas at JavaOne, NFJS Software Symposium, and local Java user groups.

Besides JavaFX, he has a wide range of technology interests including Java, OSGi, Scala,
BugLabs, Arduino, SunSPOT, and any other interesting projects running on the JVM. You
can follow Vladimir through his blog: http://blog.vladimirvivien.com/, Twitter:
http://twitter.com/vladimirvivien, and LinkedIn: http://www.linkedin.com/
in/vvivien.

Firstly, I want to thank my wife for her support, especially during the crunch
period when I would lock myself in my ofice for hours to inish a chapter.
I also want to thank everyone who offered kind and encouraging words
that kept me going when I wanted to literally walk away from the project.

A special shout out goes to Sarah Cullington, my editor, who is the reason
that this book exists. Thank you, Sarah, for not giving up on the project
despite its many setbacks. Thanks to the entire Packt Publishing team
for taking the risk in a new author like myself, and in a nascent technology
like JavaFX.

Finally, I must give a shout out to to the Sun team, who saw the need for a
declarative language for rich client development on the VM, and seized the
opportunity to bring JavaFX to life. Although JavaFX is new in this space,
thanks to the hard work of these dedicated engineers, JavaFX is a complete
platform with a complete toolset for developing rich and engaging visual
applications on the JVM.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Anghel Leonard is a senior Java developer with more than 12 years of experience
in Java SE, Java EE, and the related frameworks. He wrote and published more than
20 articles about Java technologies, and more than 100 tips and tricks. He also wrote
two books about XML and Java (one for beginners and one for advanced readers), and
one about JBoss Tools 3.0, with Packt Publishing. During this time, he developed web
applications using the latest technologies on the market. In the past two years, he has
been focused on developing RIA projects for GIS ields. He is interested in bringing as
much desktop as possible to the Web; therefore, GIS applications represents a real
challenge for him.

Luca Masini is a Senior Software Engineer and Architect, who started as a game
developer for Commodore 64 (Football Manager) and Commodore Amiga (Ken il
guerriero). He soon turned to object-oriented programming, and for that, he was
always attracted by the Java language, right from its beginning in 1995.

After having found his passion, he worked as a consultant for major Italian banks,
developing and integrating the main software projects for which he often took technical
leadership. He was able to adopt Java Enterprise in an environment where COBOL was
the lagship platform, converting it from mainframe-centric to distributed.

He then set his eyes upon open source technologies, starting from Linux and then
with enterprise frameworks, with which he was able to introduce some low-impact
concepts, such as IoC, ORM, MVC, and so on. For the the same reason, he was also
an early adopter of Spring, Hibernate, Struts, and a whole host of other technologies
that, in the long run, have given his customers a technological advantage, and
therefore a development cost-cut.

www.allitebooks.com

http://www.allitebooks.org

Lately, however, his attention has been completely directed towards the simpliication and
standardization of development with Java EE, and for this reason, he is working at the
ICT of a large Italian company to introduce advanced build tools (Maven and Continuous
Integration), archetypes of project, and Agile Development with plain standards.

He has worked on the following books (from Packt):

 f Google Web Toolkit
 f Spring Web Flow 2
 f Spring Persistence with Hibernate

Gaga tu sei qui. Ah tu non fuggi. Tu mi risponderai ino all'ulitmo grido.

Meenakshi Verma has been a part of the IT industry since 1998. She is experienced
in putting up solutions across multiple industry segments using SAP BI, SAP Business
Objects, and Java/J2EE technologies. She is currently based in Toronto, Canada, and
is working with Enbridge Gas Distribution.

Meenakshi has been helping with technical reviews for books published by Packt
publishing across varied enterprise solutions. Her earlier works include JasperReports
for Java Developers, Java EE 5 Development using GlassFish Application Server, Practical
Data Analysis and Reporting with BIRT', and EJB 3 Developer's Guide, Learning DOJO.

I'd like to thank my father (Mr. Bhopal Singh) and mother (Mrs. Raj Bala) for
laying a strong foundation in me and giving me their unconditional love and
support. I also owe thanks and gratitude to my husband (Atul Verma) for his
encouragement and support throughout the review of this book, and many
others: my four year old son (Prieyaansh Verma) for giving me the warmth
of his love despite my hectic schedules, and my brother (Sachin Singh) for
always being there for me.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my son MJV: his smile is my daily inspiration.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface­ 1
Chapter­1:­Getting­Started­with­JavaFX­ 7
Introduction­ 7
Installing­the­JavaFX­SDK­ 9
Setting­up­JavaFX­for­the­NetBeans­IDE­ 11
Setting­up­JavaFX­for­the­Eclipse­IDE­ 16
Using­javafxc­to­compile­JavaFX­code­ 19
Creating­and­using­JavaFX­classes­ 22
Creating­and­using­variables­in­JavaFX­ 25
Using­binding­and­triggers­to­update­variables­ 28
Creating­and­using­JavaFX­functions­ 32
Integrating­your­JavaFX­code­with­Java­ 35
Creating­and­using­JavaFX­sequences­ 37
Working­with­JavaFX­String­ 41

Chapter­2:­Creating­JavaFX­Applications­ 45
Introduction­ 45
Building­a­JavaFX­application­ 46
Drawing­simple­shapes­ 50
Creating­complex­shapes­using­Path­ 55
Creating­shapes­with­constructive­area­geometry­ 57
Drawing­letter­shapes­using­the­Text­class­ 60
Handling­user­input­ 64
Arranging­your­nodes­on­stage­ 67
Making­your­scripts­modular­ 70
Creating­your­own­custom­node­ 73
Controlling­your­application's­window­style­ 76
Going­full-screen­ 79

ii

Table of Contents

Chapter­3:­Transformations,­Animations,­and­Effects­ 81
Introduction­ 82
Modifying­shapes­with­the­Transformation­API­ 82
Creating­simple­animation­with­the­Transition­API­ 85
Composing­animation­with­the­Transition­API­ 89
Building­animation­with­the­KeyFrame­API­ 93
Creating­custom­interpolators­for­animation­ 100
Morphing­shapes­with­the­DelegateShape­class­ 102
Using­data­binding­to­drive­animation­sequences­ 104
Applying­cool­paint­effects­with­gradients­ 107
Creating­your­own­customized­Paint­ 109
Adding­depth­with­lighting­and­shadow­effects­ 111
Creating­your­own­Text­effect­ 114
Adding­visual­appeal­with­the­Relection­effect­­ ­ 116

Chapter­4:­Components­and­Skinning­ 119
Introduction­ 119
Creating­a­form­with­JavaFX­controls­ 120
Displaying­data­with­the­ListView­control­ 125
Using­the­Slider­control­to­input­numeric­values­ 128
Showing­progress­with­the­progress­controls­ 131
Creating­a­custom­JavaFX­control­ 134
Embedding­Swing­components­in­JavaFX­ 139
Styling­your­applications­with­CSS­ 143
Using­CSS­iles­to­apply­styles­ 148
Skinning­applications­with­multiple­CSS­iles­ 152

Chapter­5:­JavaFX­Media­ 157
Introduction­ 157
Accessing­media­assets­ 158
Loading­and­displaying­images­with­ImageView­ 159
Applying­effects­and­transformations­to­images­ 163
Creating­image­effects­with­blending­ 167
Playing­audio­with­MediaPlayer­ 172
Playing­video­with­MediaView­ 175
Creating­a­media­playback­component­ 179

Chapter­6:­Working­with­Data­ 185
Introduction­ 185
Saving­data­locally­with­the­Storage­API­ 186
Accessing­remote­data­with­HttpRequest­ 189
Downloading­images­with­HttpRequest­ 192
Posting­data­to­remote­servers­with­HttpRequest­ 196

iii

Table of Contents

Uploading­iles­to­servers­with­HttpRequest­ 200
Building­RESTful­clients­with­the­PullParser­API­ 204
Using­the­Feed­API­to­create­RSS/Atom­clients­ 213
Visualizing­data­with­the­JavaFX­chart­API­ 220

Chapter­7:­Deployment­and­Integration­ 225
Introduction­ 225
Building­and­packaging­your­app­with­an­IDE­ 227
Building­and­packaging­your­app­with­javafxpackager­ 229
Packaging­your­app­to­be­Web­Start(ed)­ 232
Packaging­your­app­as­an­applet­ 237
Passing­arguments­to­JavaFX­applications­ 242
Making­your­applets­drag-to-install­ 245
Controlling­JavaFX­applets­from­JavaScript­ 250

Chapter­8:­The­JavaFX­Production­Suite­ 259
Introduction­ 259
Loading­multiple­images­dynamically­ 260
Exporting­Adobe­Photoshop­graphics­to­JavaFX­ 265
Exporting­Adobe­Illustrator­graphics­to­JavaFX­ 269
Exporting­Scalable­Vector­Graphics­(SVG)­to­JavaFX­ 274
Using­objects­loaded­from­FXZ­iles­ 277

Appendin­A:­Mobile­JavaFX­ 285
Appendin­B:­JavaFX­Composer­ 287
Appendin­C:­JavaFX­Products­and­Frameworks­ 289
Appendin­D:­Best­Practices­for­Development­ 291
Appendin­E:­Best­Practices­for­Deployment­ 295
Index­ 299

Preface
This book is a collection of code recipes, examples, and informative discourses designed
to enable the reader to get started with creating JavaFX application quickly. The book is
arranged as a series of loosely related code recipes that a reader can easily select to it
his or her needs. It exposes readers to a great variety of topics designed to satisfy different
skill levels. Readers will learn about the language, animation techniques, paints, effects,
JavaFX controls, integration of Swing components, styling with CSS, audio/video, deployment
practices, and JavaFX integration with Adobe design tools.

What this book covers
Chapter 1, Getting Started with JavaFX... This is the "getting started" chapter of the book. It
provides introductory materials to the platform, including installation instructions to get your
environment set up. It also covers language basics such as classes, data types, function
usage, variable declaration, data binding, triggers, Java and JavaFX integration.

Chapter 2, Creating JavaFX Applications... This chapter covers the essential building blocks
of the JavaFX application framework, including primitive shapes, path, text, constructive area
geometry, mouse/keyboard input, custom node, and window styling.

Chapter 3, Transformations, Animations, and Effects... This chapter explores the animation
capabilities supported in JavaFX. You start with the Transition API to quickly build simple
animations. The material continues to cover the KeyFrame API for more advanced animation
sequences. You will learn about colors, effects, and how to create your own custom paint
and effects.

Chapter 4, Components and Skinning... This chapter is divided into two sections. The irst
section shows readers how to use the set of standard JavaFX controls. The chapter also
shows how to embed Swing components in your JavaFX scene graph. You will also learn how
to create your own custom visual controls. The second section of the chapter introduces the
reader to JavaFX's support for CSS. The reader will learn how to style controls using inline
and externalized CSS to create skins.

Preface

2

Chapter 5, JavaFX Media... One of the exciting features of JavaFX is its inherent support for
multimedia. JavaFX includes support for rendering of images in multiple formats and support
for playback of audio and video on all platforms where JavaFX is supported. In this chapter,
readers learn how to display and manipulate images using the Image API. They will also learn
how to playback both audio and video using the Media API. The chapter shows also how to
create practical custom playback controls.

Chapter 6, Working with Data... JavaFX provides superb support for accessing and
manipulating data both locally and remotely. In this chapter, readers are introduced to the
Storage API for local data storage. It provides extensive coverage of JavaFX's HttpRequest API
for accessing data on remote web servers. Readers will learn how to use JavaFX's XML and
JSON parsers to build RESTful client mashups using popular services such as Google Map,
Yahoo Weather, and Zillow Listing. Finally, the chapter explores JavaFX's built-in Chart API for
data visualization.

Chapter 7, Deployment and Integration... This chapter provides coverage of the deployment
mechanism supported by JavaFX. Readers will learn how to properly build and package their
applications to target the different runtimes supported by JavaFX, including the web browser
and the desktop. Readers learn how to create Java Web Start-ready applications using the
build tools included in the SDK. The chapter shows how to write JavaScript that communicates
with your JavaFX applet while running within the browser.

Chapter 8, The JavaFX Production Suite... This chapter covers JavaFX's integral support for
designer tools from Adobe, including Illustrator and Photoshop. Readers are walked through
the process of exporting creative assets using the JavaFX Production Suite plugins available
for these tools. The chapters also shows how to integrate exported objects from Photoshop
and Illustrator into JavaFX.

Appendix A, Mobile JavaFX... In this appendix, readers learn about JavaFX's support for mobile
development. You will learn about development techniques to target mobile devices and tool
support available to get your JavaFX app in the mobile space.

Appendix B, JavaFX Composer... By the time you get your hands on this book, JavaFX
Composer will be available as part of NetBeans. This appendix introduces the reader
to the tool and its features.

Appendix C, JavaFX Products and Frameworks... This appendix introduces the user to the
community support that is developing around JavaFX. Readers learn about several open
source projects and commercial tools available for JavaFX.

Appendix D, Best Practices for Development... As the tile of this appendix indicates, readers
will learn about key practices to use when creating JavaFX development.

Appendix E, Best Practices for Deployment... This appendix is a continuation of chapter 7. It
discusses practices that should be applied when building and deploying JavaFX applications.

Preface

3

What you need for this book
 f JavaFX SDK 1.2

ff Java Development Kit (JDK)

ff NetBeans or Eclipse

 f JDK 6 update 14 (or later)

Who this book is for
This book is for Java developers, RIA content developers, and graphic designers who want to
build RIAs featuring animations, videos and other feature-rich content. If you have knowledge
of Java, JavaScript, JavaFX components, you can exploit this book to your advantage.

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<jnlp>

...

 <resources>

 <j2se version="1.5+" java-vm-args="-Xmx256M"/>

 ...

 </resources>

...

</jnlp>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<jnlp>

...

 <application-desc

 main-class="com.sun.javafx.runtime.main.Main">

 <argument>MainJavaFXScript=param.demo.Main</argument>

 <argument>name=World</argument>

 </application-desc>

...

</jnlp>

Preface

4

Any command-line input or output is written as follows:

javafxpackager -src src -appClass params.RuntimeArgsApplet

 -appName args-demo

 -appVendor "Vladimir Vivien" -appVersion 1.0

 -appCodebase "http://my.server/path/to/app/"

 -appWidth 640 -appHeight 75

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking on the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really would like to see.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://my.server/path/to/app/

Preface

5

Downloading the example code for this book
You can download the example code iles for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you ind a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from would like
to see. frustration and help us improve subsequent versions of this book. If you ind any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata. Once your errata are
veriied, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately, so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

1
Getting Started with

JavaFX

In this chapter, we will cover the following topics:

 f Installing the JavaFX SDK

 f Setting up JavaFX for the NetBeans IDE

 f Setting up JavaFX for the Eclipse IDE

 f Using javafxc to compile JavaFX Code

 f Creating and using JavaFX classes

 f Creating and using variables in JavaFX

 f Using binding and triggers to update variables

 f Creating and using JavaFX functions

 f Integrating your JavaFX code with Java

 f Creating and using JavaFX sequences

 f Working with JavaFX string

Introduction
Today, in the age of Web 2.0, AJAX, and the iPhone, users have come to expect their applications
to provide a dynamic and engaging user interface that delivers rich graphical content, audio,
and video, all wrapped in GUI controls with animated cinematic-like interactions. They want
their applications to be connected to the web of information and social networks available
on the Internet.

Getting Started with JavaFX

8

Developers, on the other hand, have become accustomed to tools such as AJAX/HTML5
toolkits, Flex/Flash, Google Web Toolkit, Eclipse/NetBeans RCP, and others that allow them
to build and deploy rich and web-connected client applications quickly. They expect their
development languages to be expressive (either through syntax or specialized APIs) with
features that liberate them from the tyranny of verbosity and empower them with the ability
to express their intents declaratively.

The Java proposition
During the early days of the Web, the Java platform was the irst to introduce rich content
and interactivity in the browser using the applet technology (predating JavaScript and even
Flash). Not too long after applets appeared, Swing was introduced as the unifying framework
to create feature-rich applications for the desktop and the browser. Over the years, Swing
matured into an amazingly robust GUI technology used to create rich desktop applications.
However powerful Swing is, its massive API stack lacks the lightweight higher abstractions
that application and content developers have been using in other development environments.
Furthermore, the applet's plugin technology was (as admitted by Sun) neglected and failed in
the browser-hosted rich applications against similar technologies such as Flash.

Enter JavaFX
The JavaFX is Sun's (now part of Oracle) answer to the next generation of rich, web-enabled,
deeply interactive applications. JavaFX is a complete platform that includes a new language,
development tools, build tools, deployment tools, and new runtimes to target desktop,
browser, mobile, and entertainment devices such as televisions. While JavaFX is itself built
on the Java platform, that is where the commonalities end. The new JavaFX scripting language
is designed as a lightweight, expressive, and a dynamic language to create web-connected,
engaging, visually appealing, and content-rich applications.

The JavaFX platform will appeal to both technical designers and developers alike. Designers
will ind JavaFX Script to be a simple, yet expressive language, perfectly suited for the
integration of graphical assets when creating visually-rich client applications. Application
developers, on the other hand, will ind its lightweight, dynamic type inference system, and
script-like feel a productivity booster, allowing them to express GUI layout, object relationship,
and powerful two-way data bindings all using a declarative and easy syntax. Since JavaFX runs
on the Java Platform, developers are able to reuse existing Java libraries directly from within
JavaFX, tapping into the vast community of existing Java developers, vendors, and libraries.

This is an introductory chapter to JavaFX. Use its recipes to get started with the platform.
You will ind instructions on how to install the SDK and directions on how to set up your
IDE. The chapter also provides a high-level introduction to the main features of the JavaFX
scripting language such as class creation, variable declaration, data types, JavaFX functional
programming support, sequences, and loops.

Chapter 1

9

Installing the JavaFX SDK
The JavaFX software development kit (SDK) is a set of core tools needed to compile, run, and
deploy JavaFX applications. If you feel at home at the command line, then you can start writing
code with your favorite text editor and interact with the SDK tools directly. However, if you want
to see code-completion hints after each dot you type, then you can always use an IDE such as
NetBeans or Eclipse to get you started with JavaFX (see other recipes on IDEs). This section
outlines the necessary steps to set up the JavaFX SDK successfully on your computer. These
instructions apply to JavaFX SDK version 1.2.x; future versions may vary slightly.

Getting ready
Before you can start building JavaFX applications, you must ensure that your development
environment meets the minimum requirements. As of this writing, the following are the
minimum requirements to run the current released version of JavaFX runtime 1.2.

Minimum system requirements

Windows Mac­OS­X Linux/OpenSolaris

 f Windows XP (SP3) or
Windows Vista 32-bit
(all editions)

 f Java Development
Kit (JDK) 6 Update
13

 f Internet Explorer 6,
Firefox 3.0

 f Mac OS X version
10.4.1

 f Java Development
Kit (JDK) 5 Update
16

 f Safari 3, Firefox 3

 f Ubuntu 8.04

 f OpenSolaris
2009.06

 f Java Development
Kit (JDK) 6 Update
13

 f Firefox 3.0

 f GStreamer Media
Library

How to do it...
The irst step for installing the SDK on you machine is to download it from http://javafx.
com/downloads/. Select the appropriate SDK version as shown in the next screenshot.

Getting Started with JavaFX

10

Once you have downloaded the SDK for your corresponding system, follow these instructions
for installation on Windows, Mac, Ubuntu, or OpenSolaris.

Installation on Windows
1. Find and double-click on the newly downloaded installation package (.exe ile)

to start.

2. Follow the directions from the installer wizard to continue with your installation.

Make sure to select the location for your installation. The installer will
run a series of validations on your system before installation starts. If the
installer inds no previously installed SDK (or the incorrect version), it will
download a SDK that meets the minimum requirements (which lengthens
your installation).

Installation on Mac OS
1. Prior to installation, ensure that your Mac OS meets the minimum requirements.
2. Find and double-click on the newly downloaded installation package (.dmg ile)

to start.
3. Follow the directions from the installer wizard to continue your installation.
4. The Mac OS installer will place the installed iles at the following location:

/Library/Frameworks/JavaFX.framework/Versions/1.2.

Installation on Ubuntu Linux and OpenSolaris
1. Prior to installation, ensure that your Ubuntu or OpenSolaris environment meets the

minimum requirements.
2. Locate the newly downloaded installation package to start installation. For Linux, the

ile will end with *-linux-i586.sh. For OpenSolaris, the installation ile will end
with *-solaris-i586.sh.

3. Move the ile to the directory where you want to install the content of the SDK.
4. Make the ile executable (chmod 755) and run it. This will extract the content of

the SDK in the current directory.
5. The installation will create a new directory, javafx-sdk1.2, which is your JavaFX

home location ($JAVAFX_HOME).
6. Now add the JavaFX binaries to your system's $PATH variable,

(export PATH=$PATH:$JAVAFX_HOME/bin).

When your installation steps are completed, open a command prompt and validate your
installation by checking the version of the SDK.

$> javafx -version

$> javafx 1.2.3_b36

Chapter 1

11

You should get the current version number for your installed JavaFX SDK displayed.

How it works...
Version 1.2.x of the SDK comes with several tools and other resources to help developers get
started with JavaFX development right away.

The major (and more interesting) directories in the SDK include:

Directory Description
bin This directory contains tools for compiling, packaging, documenting, and running

JavaFX scripts. They include javafx, javafxc, javafxdoc, and javafxpackager.
docs This directory contains documentation for various JavaFX tools and the JavaFX

APIs.
emulator This directory contains tools for JavaFX mobile emulator , which is useful for

doing mobile development with JavaFX. As of version 1.2 of the SDK, mobile
development is only available on the Windows platform.

lib This directory contains .jar iles necessary to build and run JavaFX applications
for both desktop and mobile environments.

profiles This directory contains coniguration iles for the SDK tools.
samples This directory provides sample applications to help you get started.

Setting up JavaFX for the NetBeans IDE
The previous recipe shows you how to get started with JavaFX using the SDK directly.
However if you are more of a syntax-highlight, code-completion, click-to-build person, you
will be delighted to know that the NetBeans IDE fully supports JavaFX development. JavaFX
has irst-class support within NetBeans, with functionalities similar to those found in Java
development including:

 f Syntax highlighting
 f Code completion
 f Error detection
 f Code block formatting and folding
 f In-editor API documentation
 f Visual preview panel
 f Debugging
 f Application proiling
 f Continuous background build
 f And more…

Getting Started with JavaFX

12

This recipe shows how to set up the NetBeans IDE for JavaFX development. You will learn how
to conigure NetBeans to create, build, and deploy your JavaFX projects.

Getting ready
Before you can start building JavaFX applications in the NetBeans IDE, you must ensure that
your development environment meets the minimum requirements for JavaFX and NetBeans
(see previous recipe Installing the JavaFX SDK for minimum requirements). Version 1.2 of the
JavaFX SDK requires NetBeans version 6.5.1 (or higher) to work properly.

How to do it...
As a new NetBeans user (or irst-time installer), you can download NetBeans and JavaFX
bundled and ready to use. The bundle contains the NetBeans IDE and all other required
JavaFX SDK dependencies to start development immediately. No additional downloads are
required with this option.

To get started with the bundled NetBeans, go to http://javafx.com/downloads/ and
download the NetBeans + JavaFX bundle as shown in the next screenshot (versions will
vary slightly as newer software become available).

NetBeans installation on Windows
1. Prior to installation, ensure that your Windows environment meets the minimum

requirements (see recipe Installing the JavaFX SDK).

2. Find and double-click on the newly downloaded installation package (.exe ile)
to start.

3. Follow the instructions from the installer to install NetBeans (default install location
C:\Program Files\NetBeans {version-number}).

Installation on Mac OS
1. Prior to installation, ensure that your Mac OS meets the minimum requirements

(see the recipe Installing the JavaFX SDK).

2. Find and double-click on the newly downloaded installation package (.dmg ile)
to start.

Chapter 1

13

3. Follow the directions from the installer to install NetBeans (default install location:
Macintosh HD/Applications/NetBeans/NetBeans {version-number}).

Installation on Ubuntu Linux and OpenSolaris
Prior to installation, ensure that your Ubuntu or OpenSolaris installation meets the minimum
requirements (see recipe Installing the JavaFX SDK).

1. Find the newly downloaded installation package: for Linux, the ile will end in
*-linux-i586.sh; for OpenSolaris, the ile will end in *-solaris-i586.sh.

2. Make the ile executable, and run it.

3. Follow the directions from the installer to install NetBeans (default location: $HOME
/netbeans-{version-number})

Now that NetBeans is ready, lets create a quick "Hello World" so you can test your JavaFX
NetBeans installation. To get started, select New­Project from the File menu.

When the New­Project wizard opens, select JavaFX from the Categories list and click on the
Next button. Enter the location where the project will be saved, and click on the Next button.
You will end up with a shell of a JavaFX application ready to run. Update the title and
content properties as highlighted in the next code snippet. You can see the full code listing
at ch01/source-code/src/hello/HelloJavaFX.fx.

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.text.Text;

import javafx.scene.text.Font;

Getting Started with JavaFX

14

Stage {

 title: "Hello JavaFX"

 width: 250

 height: 80

 scene: Scene {

 content: [

 Text {

 font : Font {size : 16}

 x: 10

 y: 30

 content: "Hello World!"

 }

]

 }

When you run the code (right-click on the project and select Run­Project), NetBeans
automatically handles the compilation, packaging, and execution of the code in the
JavaFX runtime for you, as shown in the next screenshot.

How it works...
When you download the bundled NetBeans + JavaFX SDK, it comes with everything needed
to start developing JavaFX. The bundle will install the NetBeans IDE and will also automatically
download and install the NetBeans plugins required for JavaFX development including the latest
SDK. Be aware that if you have downloaded the SDK separately (as explained in the recipe
Installing the JavaFX SDK), you will end up with two copies of the SDK on your local machine.

There's more...
If you already use NetBeans, you can make your IDE JavaFX-ready by downloading the necessary
plugins. The plugins contain the JavaFX SDK and all required dependencies to start your JavaFX
development immediately, no other download is required. Note that your NetBeans must meet
the minimum requirements for JavaFX to work properly (see previous recipe).

Chapter 1

15

Download JavaFX NetBeans plugin

1. Open the Plugins management window (Tools­|­Plugins) in NetBeans and click on
the Available­Plugins tab.

2. Do a search for javafx to ilter the available plugins list as shown in the
previous screenshot.

3. Select the JavaFX­Kit and the JavaFX­SDK­for­{Your­OS­name} bundles as shown
in the previous screenshot, and then click on the Install button.

4. Follow the instructions from the NetBeans installer to install the selected plugins.

5. Make sure to select Restart­IDE­Now to complete the installation.

See also
 f Installing the JavaFX SDK

 f Setting up JavaFX for the Eclipse IDE

www.allitebooks.com

http://www.allitebooks.org

Getting Started with JavaFX

16

Setting up JavaFX for the Eclipse IDE
As of JavaFX version 1.2, Sun Microsystems the name (will be Oracle by the time you read
this) oficially released a fully functional plugin to support development in the Eclipse IDE.
While the Eclipse plugin came after NetBean's, it still packs an invaluable set of functionalities
for developers who feel more comfortable working in Eclipse, including:

 f Project creation wizard and templates

 f Syntax highlighting

 f Code completion

 f Error detection

 f Code block formatting and folding

 f In-editor API documentation

 f Debugging

 f Continuous background build

 f And more…

This recipe shows how to set up the Eclipse IDE for JavaFX development. You will learn how to
conigure Eclipse and the JavaFX 1.2 plugin.

Getting ready
Before you can start building JavaFX applications in the Eclipse IDE, you must ensure that your
development environment meets the minimum requirements for JavaFX 1.2, which requires
Eclipse 3.4 (Ganamede) for Java EE developers (or higher). To get the Eclipse plugin to work
properly, ensure that you have downloaded and conigured the Java JDK and the JavaFX SDK
(see the recipe Installing the JavaFX SDK for details).

How to do it...
As with anything else in Eclipse, JavaFX support comes in the form of a plugin. You have to
download and conigure the plugin to work with your previously installed local JavaFX SDK
prior to building your applications. To get started, do the following:

1. Select Software­Updates from the Help menu to open the Plugins management
window.

2. Click on the Available­Software tab.

3. Add the site http://javafx.com/downloads/eclipse-plugin/ as the
plugin site.

Chapter 1

17

4. Select the JavaFX site, as shown in the previous screenshot, then click on Install­
to continue.

5. Follow the instructions of the plugin wizard.

6. Accept the terms of the license, and make sure to restart the Eclipse IDE
when prompted.

Now that you have Eclipse setup with JavaFX, it makes sense to create a quick Hello­World
application in Eclipse to test the installation.

To get started, select New from the File menu (you may have to select Other if JavaFX is not
listed as a project type).

You must have the SDK installed and conigured prior to creating your
irst application (see recipe Installing the JavaFX SDK).

7. When presented with the new project wizard, select JavaFX­Project and click on
the Next button.

8. Then, provide the project's name (HelloWorld), location, JRE version, and type
(default is Desktop) to continue with the project's creation.

9. Click on the Next button and select a project template (which is a based on
pre-existing sample code). Select the Empty­Project template and click on the
Finish button.

10. The wizard will complete the project creation, and you should have a project shell
ready for you to start coding.

Getting Started with JavaFX

18

11. To continue, create a new code package (right-click on the project source directory,
and select New­|­Package), and name the package hello.

12. Next, right-click on the newly created source package and select New­|­Empty­
JavaFX­Script from the context menu, and name it HelloJavaFX.fx.

13. This will do exactly what it says, which is to create an empty code window. Notice,
however, that the editor comes with several code snippets that you can reuse in
your own code.

14. In the Snippets window, shown in the previous screenshot, click on Applications and
double-click on Stage. This will bring up a template editor. Accept the default values
and continue.

Edit the sample code by adding the highlighted portion. You can see the full code listing at
ch01/source-code/src/hello/HelloJavaFX.fx.

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.text.Text;

import javafx.scene.text.Font;

Stage {

 title: "Hello JavaFX"

 scene: Scene {

 width: 250

 height: 200

 content: [

 Text {

Chapter 1

19

 font : Font {size : 16}

 x: 10

 y: 30

 content: "Hello World!"

 }

]

}

Once you have updated the code, right-click on the project and select Run­As­|­JavaFX­
Application. If you are running the application for the irst time, you will be prompted to
select the application's targeted proile and the main class.

How it works...
Support for JavaFX in Eclipse comes as separate plugin download. When you install the plugin,
it adds the capabilities of JavaFX development to your IDE. Unlike the NetBeans plugin, as of
version 1.2, the SDK is not available as part of the plugin download. You must download and
have the SDK installed on your workstation. When the plugin is installed, it will look for the
SDK on your machine.

See also
 f Installing the JavaFX SDK

 f Setting up JavaFX for the NetBeans IDE

Using javafxc to compile JavaFX code
While it certainly makes it easier to build JavaFX with the support of an IDE (see the NetBeans
and Eclipse recipes), it is not a requirement. In some situations, having direct access to the
SDK tools is preferred (automated build for instance). This recipe explores the build tools that
are shipped with the JavaFX SDK and provides steps to show you how to manually compile
your applications.

Getting ready
To use the SDK tools, you will need to download and install the JavaFX SDK. See the recipe
Installing the JavaFX SDK for instructions on how to do it.

Getting Started with JavaFX

20

How to do it...
Open your favorite text/code editor and type the following code. The full code is available from
ch01/source-code/src/hello/HelloJavaFX.fx.

package hello;

import javafx.stage.Stage;

import javafx.scene.Scene

import javafx.scene.text.Text;

import javafx.scene.text.Font;

Stage {

 title: "Hello JavaFX"

 width: 250

 height: 80

 scene: Scene {

 content: [

 Text {

 font : Font {size : 16}

 x: 10

 y: 30

 content: "Hello World!"

 }

]

 }

}

Save the ile at location hello/Main.fx.

To compile the ile, invoke the JavaFX compiler from the command line from a directory up from
the where the ile is stored (for this example, it would be executed from the src directory):

javafxc hello/Main.fx

If your compilation command works properly, you will not get any messages back from the
compiler. You will, however, see the ile HelloJavaFX.class created by the compiler in the
hello directory.

If, however, you get a "file not found" error during compilation, ensure that you have
properly speciied the path to the HelloJavaFX.fx ile.

How it works...
The javafxc compiler works in similar ways as your regular Java compiler. It parses and
compiles the JavaFX script into Java byte code with the .class extension.

Chapter 1

21

javafxc accepts numerous command-line arguments to control how and what sources
get compiled, as shown in the following command:

javafxc [options] [sourcefiles] [@argfiles]

where options are your command-line options, followed by one or more source iles,
which can be followed by list of argument iles. Below are some of the more commonly
javafxc arguments:

 f classpath (-cp)—the classpath option speciies the locations (separated by a path
separator character) where the compiler can ind class iles and/or library jar iles
that are required for building the application.
javafxc -cp .:lib/mylibrary.jar MyClass.fx

 f sourcepath—in more complicated project structure, you can use this option to specify
one or more locations where the compiler should search for source ile and satisfy
source dependencies.
javafxc -cp . -sourcepath .:src:src1:src2 MyClass.fx

 f -d—with this option, you can set the target directory where compiled class iles are
to be stored. The compiler will create the package structure of the class under this
directory and place the compiled JavaFX classes accordingly.
javafxc -cp . -d build MyClass.fx

When specifying the source iles, you can use the wild card characters to indicate
multiple source iles to be compiled as follows:

javafxc -d build src/*.fx

 f The @argiles option lets you specify a ile which can contain javafxc
command-line arguments. When the compiler is invoked and a @argfile
is found, it uses the content of the ile as an argument for javafxc. This can
help shorten tediously long arguments into short, succinct commands.

Assume ile cmdargs has the following content

-d build

-cp .:lib/api1.jar:lib/api2.jar:lib/api3.jar

-sourcepath core/src:components/src:tools/src

Then you can invoke javafxc as:

$> javafxc @cmdargs

See also
 f Installing the JavaFX SDK

Getting Started with JavaFX

22

Creating and using JavaFX classes
JavaFX is an object-oriented scripting language. As such, object types, represented as classes,
are part of the basic constructs of the language. This section shows how to declare, initialize,
and use JavaFX classes.

Getting ready
If you have used other scripting languages such as ActionScript, JavaScript, Python, or PHP,
the concepts presented in this section should be familiar. If you have no idea what a class is
or what it should be, just remember this: a class is code that represents a logical entity (tree,
person, organization, and so on) that you can manipulate programmatically or while using your
application. A class usually exposes properties and operations to access the state or behavior
of the class.

How to do it...
Let's assume we are building an application for a dealership. You may have a class called
Vehicle to represent cars and other type of vehicles processed in the application. The next
code example creates the Vehicle class. Refer to ch01/source-code/src/javafx/
Vehicle.fx for full listing of the code presented here.

1. Open your favorite text editor (or ire up your favorite IDE).

2. Type the following class declaration.
class Vehicle {

 var make;

 var model;

 var color;

 var year;

 function drive () : Void {

 println("You are driving a "

 "{year} {color} {make} {model}!")

 }

}

3. Once your class is properly declared, it is now ready to be used. To use the class,
add the following (highlighted code) to the ile:
class Vehicle {

...

}

Chapter 1

23

var vehicle = Vehicle {

 year:2010

 color: "Grey"

 make:"Mini"

 model:"Cooper"

};

vehicle.drive();

4. Save the ile as Vehicle.fx. Now, from the command-line, compile it with
$> javafxc Vehicle.fx

If you are using an IDE, you can simply right, click on the
ile to run it.

When the code executes, you should see:

$> You are driving a 2010 Grey Mini Cooper!

How it works...
The previous snippet shows how to declare a class in JavaFX. Albeit a simple class, it shows
the basic structure of a JavaFX class. It has properties represented by variables declarations:

 var make;

 var model;

 var color;

 var year;

and it has a function:

 function drive () : Void {

 println("You are driving a "

 "{year} {color} {make} {model}!")

 }

which can update the properties and/or modify the behavior (for details on JavaFX functions,
see the recipe Creating and Using JavaFX functions). In this example, when the function is
invoked on a vehicle object, it causes the object to display information about the vehicle
on the console prompt.

Getting Started with JavaFX

24

Object literal initialization
Another aspect of JavaFX class usage is object declaration. JavaFX supports object­literal­
declaration to initialize a new instance of the class. This format lets developers declaratively
create a new instance of a class using the class's literal representation and pass in property
literal values directly into the initialization block to the object's named public properties.

var vehicle = Vehicle {
 year:2010
 color: "Grey"
 make:"Mini"
 model:"Cooper"
};

The previous snippet declares variable vehicle and assigns to it a new instance of the
Vehicle class with year = 2010, color = Grey, make = Mini, and model = Cooper.
The values that are passed in the literal block overwrite the default values of the named
public properties.

There's more...
JavaFX class deinition mechanism does not support a constructor as in languages such as
Java and C#. However, to allow developers to hook into the life cycle of the object's instance
creation phase, JavaFX exposes a specialized code block called init{} to let developers
provide custom code which is executed during object initialization.

Initialization block
Code in the init block is executed as one of the inal steps of object creation after properties
declared in the object literal are initialized. Developers can use this facility to initialize values
and initialize resources that the new object will need. To illustrate how this works, the previous
code snippet has been modiied with an init block. You can get the full listing of the code at
ch01/source-code/src/javafx/Vehicle2.fx.

class Vehicle {
...

 init {
 color = "Black";
 }

 function drive () : Void {
 println("You are driving a "
 "{year} {color} {make} {model}!");
 }
}

var vehicle = Vehicle {
 year:2010

Chapter 1

25

 make:"Mini"
 model:"Cooper"
};

vehicle.drive();

Notice that the object literal declaration of object vehicle no longer includes the color
declaration. Nevertheless, the value of property color will be initialized to Black in the
init{} code block during the object's initialization.

When you run the application, it should display:

You are driving a 2010 Black Mini Cooper!

See also
 f Declaring and using variables in JavaFX

 f Creating and using JavaFX functions

Creating and using variables in JavaFX
JavaFX is a statically type-safe and type-strict scripting language. Therefore, variables (and
anything which can be assigned to a variable, including functions and expressions) in JavaFX,
must be associated with a type, which indicates the expected behavior and representation of
the variable. This sections explores how to create, initialize, and update JavaFX variables.

Getting ready
Before we look at creating and using variables, it is beneicial to have an understanding of
what is meant by data type and be familiar with some common data types such as String,
Integer, Float, and Boolean. If you have written code in other scripting languages such
as ActionScript, Python, and Ruby, you will ind the concepts in this recipe easy to understand.

How to do it...
JavaFX provides two ways of declaring variables including the def and the var keywords.

def X_STEP = 50;
prntln (X_STEP);
X_STEP++; // causes error
var x : Number;
x = 100;
...
x = x + X_LOC;

www.allitebooks.com

http://www.allitebooks.org

Getting Started with JavaFX

26

How it works…
In JavaFX, there are two ways of declaring a variable:

 f def—The def keyword is used to declare and assign constant values. Once a
variable is declared with the def keyword and assigned a value, it is not allowed
be reassigned a new value.

 f var—The var keyword declares variables which are able to be updated at any point
after their declaration.

There's more...
All variables must have an associated type. The type can be declared explicitly or be
automatically coerced by the compiler. Unlike Java (similar to ActionScript and Scala),
the type of the variable follows the variable's name separated by a colon.

var location:String;

Explicit type declaration
The following code speciies the type (class) that the variable will receive at runtime:

var location:String;

location = "New York";

The compiler also supports a short-hand notation that combines declaration and initialization.

var location:String = "New York";

Implicit coercion
In this format, the type is left out of the declaration. The compiler automatically converts the
variable to the proper type based on the assignment.

var location;

location = "New York";

Variable location will automatically receive a type of String during compilation because the
irst assignment is a string literal.

Or, the short-hand version:

var location = "New York";

JavaFX types
Similar to other languages, JavaFX supports a complete set of primitive types as listed:

Chapter 1

27

:String—this type represents a collection of characters contained within within quotes
(double or single, see following). Unlike Java, the default value for String is empty ("").

"The quick brown fox jumps over the lazy dog" or

'The quick brown fox jumps over the lazy dog'

:Number—this is a numeric type that represents all numbers with decimal points. It is backed
by the 64-bit double precision loating point Java type. The default value of Number is 0.0.

0.01234

100.0

1.24e12

:Integer—this is a numeric type that represents all integral numbers. It is backed by the
32-bit integer Java type. The default value of an Integer is 0.

-44

7

0

0xFF

:Boolean—as the name implies, this type represents the binary value of either true
or false.

:Duration—this type represent a unit of time. You will encounter its use heavily in animation
and other instances where temporal values are needed. The supported units include ms, s, m,
and h for millisecond, second, minute, and hour respectively.

12ms

4s

12h

0.5m

:Void—this type indicates that an expression or a function returns no value. Literal
representation of Void is null.

Variable scope
Variables can have three distinct scopes, which implicitly indicates the access level of the
variable when it is being used.

Script level
Script variables are deined at any point within the JavaFX script ile outside of any code block
(including class deinition). When a script-level variable is declared, by default it is globally
visible within the script and is not accessible from outside the script (without additional
access modiiers).

Getting Started with JavaFX

28

Instance level
A variable that is deined at the top-level of a class is referred to as an instance variable.
An instance level is visible within the class by the class members and can be accessed by
creating an instance of the class.

Local level
The least visible scope are local variables. They are declared within code blocks such as
functions. They are visible only to members within the block.

See also
 f Creating and using JavaFX classes
 f Creating and using JavaFX functions

Using binding and triggers to update
variables

Languages, such as JavaFX, which target a visual domain have to be event-based in order to
handle the non-linearity of GUI interactions. Traditionally, in a visual programming paradigm,
events are generated by components when their internal states are updated. This can require
an elaborate notiication-handler syntax to properly express the relationship between event
broadcasters and handlers.

This section explores the easy and intuitive declarative syntax of JavaFX's event-based
programming. It looks at how variable values can remain synchronized using a mechanism
called binding.

Getting ready
This section discusses concepts that require familiarity with variable bindings as found in
other scripting languages. Binding usually refers to the ability to automatically react and
handle events caused by resources (or other events) to which handlers are bound.

How to do it...
JavaFX facilitates variable binding using the bind keyword. Let us look at a simple example
that shows the ease with which you can bind variables. Note that you can ind listings for
binding examples at ch01/source-code/src/binding/.

var step = 100;
def locX = bind step;

println ("locX = {locX}");

Chapter 1

29

step = 110;
println ("locX = {locX}");

step = 150;
println ("locX = {locX}");

When you run the application, you will get the following output:

locX = 100
locX = 110
locX = 150

Notice that the value of variable locX is synchronized with the value of variable step.
Whenever step is updated, locX changes in value automatically.

How it works...
The general syntax for binding looks like the following:

def variableX = bind expression

The idea behind binding is to keep variableX, on the left-hand side of the assignment,
updated whenever there is a change in the bound expression on the right-hand side.
JavaFX supports several forms of expressions which can be used to update the variable
on the left-hand side.

Binding to variables
This is the simplest form of the binding syntax where the variable on the left is bound to
other variables.

var x = 100;

def y = bind x + 10;

When the value of variable x changes, y is updated with the new value of x + 10.

Binding to a conditional
JavaFX also supports conditional binding expressions, which update the left-hand side of
the assignment based on a predeined condition.

var x = 2;

def row = bind if((x mod 2) == 0) "even" else "odd";

for(n in [0..5]){

 x = n;

 println ("Row {n} is {row}");

}

Getting Started with JavaFX

30

The value of variable row is updated depending on the evaluation of the bound
conditional expression.

Row 0 is even

Row 1 is odd

Row 2 is even

Row 3 is odd

In the example, when the if statement evaluates to true, row is assigned "even", else it
receives "odd".

Binding to a code block
The code block binding lets developers create compound expressions to logically control how
the declared variable is updated.

var x = 2;

def xDoubled = bind {

 var y = 2;

 y * x;

}

x = 3;

println ("X = 3, doubled = {xDoubled}");

x = 27;

println ("x = 27, doubled = {xDoubled}");

When x is updated, the code block is re-evaluated, and xDoubled is updated with the new
value of the last expression in the block.

Be aware that assigning a code block to a variable without the bind
keyword is legal in JavaFX. So, make sure not to leave the bind
keyword out, as omitting it changes the meaning of the assignment,
and it will behave differently.

Binding to a function
JavaFX can bind a variable to a function call as well.

function squareIt(x):Number {

 x*x;

}

var param = 0;

def squared = bind squareIt(param);

param = 96;

println ("Param = {param}, squared = {squared}");

Chapter 1

31

When the parameter of the function (value assigned to param) call is updated, the function is
automatically re-invoked and the variable squared receives the newly calculated value.

Bind to an object literal
A variable can bind to an object literal declaration. When the values of the bound object
properties change, the expression is updated with a new object.

class Location {

 var x:Integer;

 var y:Integer;

}

var xLoc = 0;

var yLoc = 0;

def loc = bind Location {

 x: xLoc;

 y: yLoc;

}

xLoc = 12;

yLoc = 234;

println ("loc.x = {loc.x}, loc.y = {loc.y}");

To avoid creating a new object every time a bound property value is updated,
bind each literal property in the object declaration separately as shown.

var xLoc = 0;

var yLoc = 0;

def loc = Location {

 x: bind xLoc;

 y: bind yLoc;

}

There's more...
JavaFX offers another event-based mechanism called a trigger. A trigger is a code block that
gets executed when the variable it is assigned to is updated. At its simplest form, a trigger is
declared as follows

def variable = value on replace [oldValueVarName]{

 // code to execute

}

Getting Started with JavaFX

32

Here, the code block is executed when the variable on the left-hand side of the assignment
is updated. The oldValueVarName variable name is optional and holds the value of variable
before the update.

Using triggers
The following is a simple trigger example. You can see the full code listing for this code at
ch01/source-code/src/binding/TriggerDemo.fx.

def X_BOUND = 10;
var locX = 7 on replace oldX {
 if(locX <= X_BOUND) {
 println ("{oldX} ==> {locX}, in bound");
 }else{
 println ("{oldX} ==> {locX}, Out of bound!");
 }
}
locX = 12;
locX = 4;

Whenever the value of variable locX is updated (including the initial assignment), the on
replace trigger is executed as well.

0 ==> 7, in bound

7 ==> 12, out of bound!

12 ==> 4, in bound

See also
 f Declaring and using variables in JavaFX

Creating and using JavaFX functions
One of the types supported by JavaFX is named a function­type. To be clear, this is not the
type of the returned value of the function, but rather an actual data type that represents
a function. This versatility throws JavaFX squarely in the realm of functional programming,
where functions are regarded as irst-order data types and can be manipulated just like any
other supported data types. This section shows you how to create functions in JavaFX and use
them as expressions in your code.

Getting ready
The concepts presented here discuss functions as an executable code unit that can be
assigned and reused. You are expected to know the general purpose of a function and how
to use it. If you have written any code before, you most likely know how to create and use
a function.

Chapter 1

33

How to do it...
In JavaFX, A function is a specialized code block preceded by the function keyword. It
can accept zero or more typed parameters and always returns a typed value. Here is the
declaration of a function type assigned to variable called squareIt, which returns the
squared value of the number passed in as parameter. Complete code listing can be found
at ch01/source-code/src/javafx/SimpleFunction.fx.

var squareIt : function(:Number):Number;

squareIt = function (x) {

 x * x;

}

var square3 = squareIt(3);

println ("3 squared = {square3}");

How it works...
In JavaFX, a function has a distinct, deinable type (similar to String, Number, and Integer).
A function type is deined by its parameter signature and its return type. Variables (and
parameters) can be assigned a function type. For instance, in the previous snippet, variable
squareIt is declared as being a function type. This means that the variable squareIt can
be assigned a function that takes one parameter of type Number and returns a value of type
Number. squareIt can be used anywhere a function call can be used, as shown in the call
var square3 = squareIt(3).

Note that the declaration and deinition of the function can be combined in one step, as
show next:

function squareIt(x:Number):Number{

 x * x;

}

The JavaFX compiler can infer the types associated with a function's parameter signature and
return value. Therefore, the function deinition can be reduced to:

function squareIt(x) {

 x*x;

}

The type inference engine in JavaFX will determine the proper type of the parameter based on
value of the parameter at runtime. The return type of the function is based on the type of the
last statement in the function or the type of the value used in the return statement.

Getting Started with JavaFX

34

There's more...
There are couple more features about functions in which you may be interested.

Bound functions
Since a function is a considered to be an expression in JavaFX, it can be bound to a variable
(similar to a code block binding, see Using Binding and Triggers to Update Variables).

var f = 10;

bound function increaseIt(a:Number):Number {

 a + f;

}

var x = 5;

def y = bind increaseIt(x);

When a function is deined as being bound, any change to values inside the function block
(including its parameters) will cause an update to the binding variable. Here, whenever
variable f or x changes, the value of y is updated automatically.

The run() function
JavaFX offers a way to deine a script ile's main­entry­point using the special script-level
function run(). If you place the following in a script ile:

function run() {

 println ("I am always called!");

}

When you execute the script, the run() function will be executed as the starting point
of the script by the JavaFX runtime. This similar to having the public static void
main(String[] args) method in Java.

When you create a script ile with script-level code without run(), the compiler creates one
for you and places your script's code inside of it. As such, your script seems to execute top to
bottom. However, when you provide your own run(), that is no longer the case. The JavaFX
runtime will only call whatever code is inside of the run() function.

See also
 f Creating and using JavaFX classes

 f Declaring and using variables in JavaFX

 f Using binding and triggers to update variables

Chapter 1

35

Integrating your JavaFX code with Java
JavaFX is built directly on top of the Java­Virtual­Machine (JVM). Therefore, your JavaFX code
has access to the entire Java ecosystem including all of the standard Java libraries such as
IO, JDBC, XML, Swing, and so on. Any compiled Java code accessible on the class path can
be called from within a JavaFX script. This recipe covers the techniques required to integrate
JavaFX and Java code together.

Getting ready
This section explore integration techniques between JavaFX and Java. You should have
familiarity with the Java language, its libraries, or have the ability to create your own classes
or libraries to be called from JavaFX.

How to do it...
The easiest way to see Java and JavaFX interoperate is to create an instance of a Java object
and invoke a method on the instance from within JavaFX. Let's go through an example. You
can see the full code listing in package ch01/source-code/src/java.

First create and compile this simple class:

public class JavaObject {

 private String name;

 public JavaObject(String n){

 name = n;

 }

 public void printReverse() {

 for(int i = name.length()-1; i >= 0; i--){

 System.out.print (name.charAt(i));

 }

 System.out.println();

 }

}

Now create a JavaFX script which creates an instance of JavaObject and invoke the the
printReverse() method on the class.

var javaObject = new JavaObject("Hello World!");

javaObject.printReverse();

www.allitebooks.com

http://www.allitebooks.org

Getting Started with JavaFX

36

How it works...
Java classes and JavaFX classes are binary-compatible. When you compile your JavaFX
classes, the JavaFX compiler creates a Java class ile (a.class extension ile). There are
three points that should be made regarding the code snippet in this recipe:

1. Similar to Java, JavaFX script supports the new operator when creating a new object
instance. This makes it easy to instantiate objects written in Java from within JavaFX.

While JavaFX objects can be instantiated using Object Literal Notation
and the new operator, Java objects can only be instantiated with the
new operator.

2. The type inference engine will automatically determine the type of the assignment
using the Java object's type.

3. Once you have access to the Java object instance, you may invoke any public
members on that object.

There is more...
In JavaFX, not only can you instantiate pure Java classes, you can also implement Java
interfaces directly. Using this mechanism, you can achieve two-way integration between
Java and JavaFX. Again, the full listing of the code presented here can be found in package
ch01/source-code/src/java.

Implementing a Java interface in JavaFX
The steps required to implement a Java interface in JavaFX are simple. You irst create
a JavaFX class which extends the interface. Then, you provide JavaFX functions which
implement methods deined in the interface, as given the following Java interface:

interface JavaInterface {
 int add(int num1, int num2);
}

You can create JavaFX script with the following implementation:

public class JavaInterfaceImpl extends JavaInterface {
 override function add(num1, num2) {
 num1 + num2;
 }
}
public function run() {
 var adder = JavaInterfaceImpl { }
 println(adder.add(1, 2));
}

Chapter 1

37

Note that in JavaFX, the extends keyword is used to implement the interface instead of
implements as in Java.

Note that there are other ways to achieve integration between Java and JavaFX. The rules vary
depending on the level of integration you are seeking:

1. Type­integration—using Java types from JavaFX, as shown in this recipe.

2. Framework­integration—for example, calling Swing components from JavaFX.

3. API­integration—wrapping native Java libraries within JavaFX classes to expose
them as JavaFX components

See also
 f Creating and using JavaFX classes
 f Declaring and using variables in JavaFX

Creating and using JavaFX sequences
JavaFX sequences can be described as being analogous to arrays in other languages. Imagine
that you want to keep track of a group of items of the same type (say a list of numbers, for
instance). You can use a sequence to store that list of items and manipulate the list with
operations such as insert, query, and item removal. This section looks at how to create and
work with JavaFX sequences.

Getting ready
You should be familiar with the concepts of array, list, and map data types. These are common
types found in all popular languages. They are designed to function as a container of other
values of arbitrary types.

How to do it...
A sequence type is declared using a non-sequence type followed the square brackets "[]".
Below are some literal declarations of sequences. You can get full listing of the code from
ch01/source-code/src/javafx/SequenceType.fx and Sequence.fx.

var numbers:Number[] = [10.0,5.6,12.3,0.44];

var numbers2 = [0,2,3,4,5,6,7,8];

var notes:String[] = ["Avion","Airplane"];

var timespans = [5s,3m,100s,5m];

var misc = [2,4.0,"messages", 5m];

Getting Started with JavaFX

38

How it works...
Sequence types represent a collection of other types in JavaFX. Sequences provide a lat (depth
of one) container where you store references to other objects. A sequence is a irst-class type in
JavaFX. Therefore, it has a return type and can participate in expressions.

JavaFX supports a initialization of sequence types using literal declaration which provides a
more natural way of representing the sequence. The literal expression for the sequence shows
each item in the sequence separated by a comma as shown below:

var numbers:Number[] = [10.0,5.6,12.3,0.44];

The type inference engine will attempt to determine the type of the sequence variable based
on the types of the items within the square brackets.

If all items within the bracket of the literal declaration are of the same type, the variable is
coerced into a sequence of that type. For instance, the following example, variable numbers2
is of type Integer[]:

var numbers2 = [0,2,3,4,5,6,7,8];

If items within the brackets are of different types, the inference engine will coerce the
variable to be of type Object[]. In the following code snippet, variable misc will be of type
Object[] and can receive member of any type:

var misc = [2,4.0,"messages", 5m];

Similar to Java arrays, items in a sequence are referenced using a zero-based positional index.
Sequence items are stored in order they are added (or declared) as shown in the snippet
below from ch01/source-code/src/javafx/Sequence.fx.

var q1 = ["Jan", "Feb", "Mar"];

println (q1[0]);

println (q1[1]);

println (q1[2]);

There is more...
Sequences come with several other important features worth mentioning here. Although
the literal representations of sequences looks like an array, that is where the similarity ends.
Sequences support several data management operations such as insert, union, query, and
delete. As you will see below, sequence expressions can also be used as generators in
JavaFX loops. The code samples are from script ile ch01/source-code/src/javafx/
Sequence.fx.

Chapter 1

39

Sequence operators
JavaFX sequences support several operators:

sizeof—operators return the size when applied to a sequence.

sizeof [1,2,3,4];

Comparison—JavaFX sequences can be tested for deep equality. This means that two
sequences are the same if they are of the same size and contain the same items. The
statement below will print true

println([1,2,3,4] == [4,3,2,1])

Reverse—this operator automatically reverses the order in which items are referenced in
a sequence.

println(reverse ["Jan", "Feb", "Mar", "Apr");

Sequence operations
JavaFX sequences also support operations to manipulate sequences and sequence
items directly.

Insert­Operation—as the name implies, this operation inserts item(s) into a given sequence.
The following example shows all of the supported form of insert.

var months = ["Jan"];

insert "May" into months;

insert ["Mar","Apr"] before months[1];

insert "Feb" after months[0];

Besides the into directive, note that the insert operation support a before and after
clause which speciies the location (index) where the item is to be inserted.

Union—sequences can be nested using literal declaration to create new lists:

var q1 = ["Jan", "Feb", "Mar"];

var h1 = [q1, ["Apr", "May", "Jun"]];

Delete­Operation—the delete operation removes items from a given sequence. The following
example shows the supported forms of delete.

var months = ["Jan", "Feb", "Mar", "Apr", "May"];

delete "May" from months;

delete months[3];

Getting Started with JavaFX

40

It is critical to understand that sequences are immutable, meaning that the
values in a sequence do not change. Rather, any modiication to a sequence
(insert, delete, and so on) generates a new sequence object to relect the
modiication desired.
When deleting by value (that is, delete "May" from months), all items
of same value will be removed from the sequence.

Sequence slices
Sequence slice notations are used to generate subsets of larger sequences. Given
this sequence

var months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun"];

Here are some slice operations supported by JavaFX:

 f months[1..4]—returns a sequence ["Feb", "Mar", "Apr", "May"]
 f months[0..<3]—returns sequence ["Jan", "Feb", "Mar"]
 f months[3..]—returns sequence ["Apr", "May", "Jun"]
 f months[0..<]—returns sequence ["Jan", "Feb", "Mar", "Apr", "May"]

Sequence­Projection—you can use constraint expressions to project sub-sequences on a
given sequence using format sequence[x | {Boolean expression}]. This notation
reads as "select all element x where the Boolean expression is true".

:

months[m|m.startsWith("M")]

The above code returns sequence ["Mar", "May"] from var months declared previously.
This expression creates slices based on given arbitrary Boolean condition. It reads as "for all
item m in months where m starts with M."

Sequence loop query
The loop structure is used to query elements in sequences to create subsets based on
conditional expressions. The general format is:

for (x0 in seq0 [where {Boolean expression}][, queryn]){}

The loop expression can use a where clause along with a Boolean expression to ilter down
to speciic elements to build the subset. A simple example is:

var points = [1,2,3,4,5,6,7,8,9,10,11,12,13,14];
var evenPoints = for(n in points where n mod 2 == 0) {n}
println (evenPoints);

Chapter 1

41

In the previous code, the loop generates a new sequence with only even members from the
original sequence, [2, 4, 6, 8, 10, 12, 14], using the where clause to specify a
selection expression.

Also notice you can add more than one query in the loop expression where the result is a
Cartesian product of all subsets expressed in each query. For instance, the following will
produce 14 elements

var doublePoints = for(n in points where n mod 2 == 0,
 i in [2,4]){
 n * i
}
println (doublePoints);

This code loops over two sequences; the irst sequence contains all even members of the
original points variable declared previously; the other is a two-member sequence containing
2 and 4, the loop generates new sequence [4, 8, 8, 16, 12, 24, 16, 32, 20,
40, 24, 48, 28, 56].

Working with JavaFX String
String is a fundamental value type in JavaFX. Similar to Java and other languages on the
JVM, the String type is used to represent text literals within a single or double quotes.
Unlike Java, however, JavaFX strings have additional capabilities which will be explored
in this section.

Getting ready
You should be familiar with the notion of string literals and expressions.

How to do it...
We have already seen how to use String types in other recipes. When creating a String, you
simply create a literal or expression to represent the string's content, and use the curly braces
to embed expressions as shown below. The full listing for this code can be found in ch01/
source-code/src/javafx/StringDemo.fx.

var str1:String = "Hello World!";
var str2 = "Goodbye forever";
var title = "King";
println ("The {title} has arrived!");

var evens = [0, 2, 4, 6, 8];
println("What are the odds {for(d in evens) "{d + 1} "}");

var amount = 445234.66;
println ("Your house is worth ${%,.2f amount}");

Getting Started with JavaFX

42

How it works...
Similar to other types, a string can be declared with a literal representation, participate in
expressions, and hold a value. The previous snippet shows the literal declaration of a string.
Variable str2 is coerced by the type-inference engine into a String type implicitly.

One of the interesting features of the String type in JavaFX is its ability to have embedded
expressions (similar to other templating languages) enclosed in curly braces. In the previous
code snippet, println ("The {title} has arrived!") will print the string with the
value of the variable title embedded in it.

You can also have complex expressions embedded in the string, as is shown from the code
snippet println("What are the odds {for(d in evens) "{d + 1} "}") from
the recipe. The embedded expression contains a loop that traverses elements from variable
evens and outputs the result from the nested string "{d + 1} " with each pass, producing
new string What are the odds 1 3 5 7 9.

The JavaFX Sting type has the ability to process string formatting expressions based on
Java's java.util.Formatter class. In the previous code snippet, we used format
expression %,.2f to format the variable amount which displays Your house is
worth $445,234.66. You can ind information about supported format expressions at
http://java.sun.com/javase/6/docs/api/java/util/Formatter.html.

There is more...
Before we leave the discussion on String, it's worth taking a look at localization. In JavaFX,
the localization mechanism is an extension of the string expression.

Using JavaFX localization
To mark a String literal as a localized string, simply preix the string with double hashes.
This causes JavaFX to substitute the string with a localized string, if one is found, from a
locale properties ile.

To illustrate, let's look at an example. The code for this example is found in package
ch01/source-code/src/locale.

Create a JavaFX script ile with the following content:

var msg1 = ##"Lift the cover";

var msg2 = ##[red button]"Press the red button to destroy";

println (msg1);

println (msg2);

Chapter 1

43

Save the ile as Localization.fx and compile. Now, create a text ile named
Localization_fr.fxproperties and type in the following:

"Lift the cover"="Soulevez le couvercle"

"red button"="Appuyez sur le bouton rouge pour détruire"

Notice that JavaFX can use either the actual string or a string key (red button) to do the
substitution for the localized string. When the code is compiled and executed, the output is:

Soulevez le couvercle

Appuyez sur le bouton rouge pour détruire

The strings are substituted automatically by the JavaFX runtime with their French translation.
If no properties ile is found for the locale, JavaFX defaults to the actual String assigned to
the variable.

2
Creating JavaFX

Applications

In this chapter, we will cover the following topics:

 f Building a JavaFX application

 f Drawing simple shapes

 f Creating complex shapes using Path

 f Creating shapes with constructive area geometry

 f Drawing letter shapes using the Text class

 f Handling user input

 f Arranging your nodes on stage

 f Making your scripts modular

 f Creating your own custom node

 f Controlling your application's window style

 f Going full-screen

Introduction
JavaFX Script was designed with the sole intent of being a language to create graphically-rich
user interfaces. Instead of the traditional imperative and dense boilerplate code (as found
in Java and other general purpose languages), JavaFX adopted an intuitive and declarative
scripting-style that lets developers quickly create complex graphical components with
simpliied constructs.

www.allitebooks.com

http://www.allitebooks.org

Creating JavaFX Applications

46

JavaFX beneited from years of experience that engineers at Sun Microsystems (now Oracle)
gained creating desktop platforms such as Swing. Therefore, the JavaFX framework comes
loaded with features and functionalities that make it ready for production-grade deployment.

In this chapter, we are going to explore how to use fundamental building blocks to create
functional JavaFX applications. This chapter covers the following topics:

 f Shapes—the most basic representation of a visual element is the geometric shape.
You will learn how to create simple and complex shapes using Shape classes.

 f Text—besides geometric shapes, JavaFX facilitates the rendition of text as graphical
nodes as well. You will learn how to render text on the stage using the Text class.

 f User­input­events—all visual components can receive user input through the mouse
and keyboard. You will see how to handle input events using event handler functions.

 f Application­organization—as your application grows in complexity, it is
imperative that you modularize your code into logical components. We will
look at code organization using packages, member access modiiers, and
other modularization techniques.

Building a JavaFX application
The irst chapter of the book introduced you to the fundamentals of the JavaFX language. Now,
you are ready to start building your own JavaFX desktop application. In this recipe, we will look
at the minimal requirements to build a runnable / JavaFX application.

Getting ready
In order to write your application, you will need to use an IDE or your favorite text editor. Refer
to Chapter 1, Getting Started with JavaFX, to ind out how to download and get started with
JavaFX with the NetBeans or Eclipse IDE.

How to do it...
The listing below shows how to create a simple, yet functional JavaFX application that uses
several components of the JavaFX application framework. The full listing of the code is
available at ch02/source-code/src/application/SimpleApplication.fx.

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.text.Font;

import javafx.scene.shape.Rectangle;

import javafx.scene.text.Text;

Chapter 2

47

Stage {

 title : "JavaFX App"

 width: 300

 height: 200

 visible: true

 scene: Scene {

 fill:Color.SILVER

 width:320

 height:220

 content: [

 Rectangle {

 x: 100 y: 50

 width: 100 height: 100

 arcWidth: 10

 arcHeight : 10

 fill: Color.RED

 },

 Text {

 content: "JavaFX"

 x:110 y:60

 fill: Color.WHITE

 font:Font {size: 16}

 }

]

 }

}

When you run this code, you should see a window similar to what is shown in the
next screenshot:

Creating JavaFX Applications

48

How it works...
Before you can get your application to run, you must import the correct packages into your
script. To display visual objects on the screen, you must, at a minimum, have the following
two packages:

 f javafx.stage.Stage

 f javafx.scene.Scene

These packages contain the base classes Stage and Scene that are required to create a
windowed area to display visual content of a JavaFX application. Other packages used in this
recipe include the following:

 f javafx.scene.paint.Color—the Color class is used to apply color to visual
components when rendered. The paint package also contains effects such as linear
and radial gradients (see Chapter 3, Transformation, Animations, and Effects).

 f javafx.scene.text.Font—this class speciies a font and its attributes used for
the Text component (see next bullet). The text package contains all other supporting
text-related classes used for rendering textual shapes.

 f javafx.scene.text.Text—the Text class is used to render text as shapes on
the screen. The text package contains all other supporting text-related classes used
for rendering textual shapes.

 f javafx.scene.shape.Rectangle—this class is part of the larger collection of
shapes offered by the Shape API. It represents a rectangular shape.

Decomposing the application
The JavaFX framework expects application content to be organized as a hierarchical stack of
Stage → Scene → Node (Tree), with Stage being the outer-most container. The next image
shows how these high-level components are organized on the desktop.

Chapter 2

49

Let's explore each of these high-level items shown in the previous image:

 f Stage—this component represents the outer-most visible window in a JavaFX desktop
application. It deines the application's main physical window and serves as a container
for all other graphical components that make up the application. The Stage exposes
several useful properties that are used in the previous code sample:

 � title:String—this is the title of the stage. In a windowed-
application, this is the title displayed in the title bar of the top-level
window.

 � width:Number—this property speciies the initial width of the
application's window.

 � height:Number—this property speciies the initial height of the
application's window.

 � visible:Boolean—this property indicates whether the window is
visible. The default is visible.

 � x:Number and y:Number—by default the the JavaFX application
framework will center the application window on the device screen.
You can however, specify the location of the window.

 � scene:Scene—this property is used to plug in an instance of the
Scene class to the stage. The scene is where all visible content to
be rendered is placed (see description of Scene next).

 f Scene—this class represents the canvas where visible content will be drawn.
Content to be rendered on the scene is logically grouped in a tree-like structure
called the Scene­Graph (see Nodes next) and is attached to the Scene's content
property. The Scene class exposes several useful properties when building the
application including:

 � fill:Color—this property speciies a Color instance used for the
scene. As of version 1.2 of the SDK, the default color for the stage is
white.

 � height:Number, width:Number—by default, the scene inherits
the stage's dimension. However, you can use these properties to
override the dimensions of the stage.

 � content:Node[]—this property is of type Sequence where one
or more scene graphs containing visual objects to be rendered are
attached (see Nodes next).

 f Nodes (or Node­Tree)—these are the visual objects that are added to the scene
to be rendered. Nodes are logically grouped in tree-like structures, named scene
graphs, where nodes can be either leaf nodes (visual components) with at most
one parent, or branch nodes (containers) with many leaf nodes attached.

Creating JavaFX Applications

50

In the code, we are using two leaf nodes: a Text­Node and a Rectangle­Node. JavaFX
offers class Group which functions as a branch node containing leaf nodes for more
complex scene graphs. You can see how to use the Group class in the recipe Creating
your own custom node.

See also
 f Setting up JavaFX for NetBeans

 f Setting up JavaFX for Eclipse

 f Declaring and using JavaFX classes

 f Creating and using JavaFX sequences

Drawing simple shapes
The JavaFX application framework was designed from the ground up to handle graphical
elements. JavaFX provides inherent support for basic geometrical shapes as a irst-class API.
This recipe shows how to programmatically draw lines, rectangles, circles, and ellipses using
the Shape APIs found in the javafx.scene.shape package.

Getting ready
Before you can draw your shapes using JavaFX, you must know how to create a basic JavaFX
application and know how to add content to the application's scene. To refresh your memory,
see the irst recipe of this chapter, Building a JavaFX application.

How to do it...
The following code snippet shows how to draw a line, a rectangle, a circle, and an ellipse
on the screen. You can get the full listing of the code from ch002/source-code/src/
shapes/SimpleShapes.fx.

def spacer = 100;
Stage {
 title: "Simple Shapes!"
 width: 500
 height: 300
 x: 100;
 y: 200
 scene: Scene {
 content: [
 Line {
 startX: 10
 startY: 10

Chapter 2

51

 endX: 10 + spacer
 endY: 10 + spacer
 strokeWidth: 5.0
 stroke: Color.BLUE
 strokeLineCap: StrokeLineCap.BUTT
 },
 Rectangle {
 x: spacer + 50
 y: spacer + 20
 width: spacer + 20
 height: spacer
 arcWidth: 20
 arcHeight: 20
 fill: Color.RED
 strokeWidth: 5.0
 stroke: Color.BLUE
 },
 Circle {
 centerX: spacer + 300
 centerY: 50
 radius: 50
 fill: Color.GREEN
 strokeWidth: 1.0
 stroke: Color.BLACK
 },
 Ellipse {
 centerX: spacer + 300
 centerY: 150
 radiusX: 100
 radiusY: 20
 fill: Color.RED
 strokeWidth: 5.0
 stroke: Color.BLUE
 }
]
 }
}

The code draws a line, rectangle, circle, and ellipse at different locations on the application's
window as shown in the following screenshot:

Creating JavaFX Applications

52

How it works...
Creating shapes using the Shape API is a straightforward process. You simply declare an
instance of the shape class that you want to draw, specify its properties, and then place
it as a node inside the stage's scene so that it can be rendered. Let's see how the shapes
presented in this recipe work:

 f Line—when drawing a line, you declare an instance of the Line class specifying,
at minimum, the line's starting coordinates with properties startX and startY
and the ending coordinates using properties endX and endY.
Line {
 startX:10 startY: 10
 endX: 10 endY: 10
}

 f Rectangle—for drawing a rectangle, you use the Rectangle class from the
Shape API. At a minimum, you must specify the coordinates of the upper-left
corner using properties x and y, and the size of the rectangle using properties
width and height:
Rectangle {
 x: 50 y: 20
 width: 300 height: 200
 arcWidth: 20 arcHeight : 20
}

arcWidth and arcHeight—optionally, you can use these properties to specify
vertical and horizontal diameters for rounded corners of the rectangle.

 f Circle—to draw a circle in JavaFX, you declare an instance of the Circle class.
You must, at a minimum, specify the circle's center coordinates using centerX
and centerY properties and the circle's radius using the radius property. When
placing a circle on stage, keep in mind that the circle's center is used as its point
of reference. Be sure to adjust your coordinates to avoid drawing circles partially
off-screen.
Circle {
 centerX: 50 centerY: 50
 radius: 50
}

 f Ellipse—both ellipse and circle work similarly. To draw the ellipse, you declare an
instance of the Ellipse class specifying the x and y coordinates of the center using
properties centerX and centerY. Additionally, you must specify the horizontal and
vertical length of the radius for the ellipse using properties radiusX and radiusY:
Ellipse {
 centerX: 100 centerY: 150
 radiusX: 100 radiusY: 20
}

Chapter 2

53

There's more...
There are other basic, though irregular, geometric shapes available from the JavaFX Shape
toolbox. Polyline and Polygon classes can be used to create shapes by connecting line
segments together. The Arc class creates circular shapes by specifying points on angular
path. Let's take a closer look at them.

Polyline and Polygon
The Polyline (and the Polygon) class creates shapes by specifying a collection of
coordinates to create line segments that are automatically connected. The Polygon class
works the same way. However, the Polygon class will also close the shape after the last
segment is drawn and ill it with a color (default is black). The Polygon code segment given
next draws a triangle, as shown in the igure alongside. The full listing of the code can be
found in ch002/source-code/src/shapes/PolygonShape.fx.

Polygon {

 points: [

 10.0, 10.0,

 100.0, 100.0,

 0.0, 100.0,

 10.0, 10.0

]

}

Arc
The Arc shape class draws an arc by specifying the center coordinates, vertical/horizontal
radii, the start angle (in degrees), and the angular length (in degrees) of the arc. The arc
shape is automatically closed and illed in with a speciied color (the default is black). The
next code segment draws the arc shown in the igure alongside (Pacman anyone?). The full
listing of the code can be found in ch002/source-code/src/shapes/ArcShape.fx.

Arc {

 centerX: 300 centerY: 50

 radiusX: 50 radiusY: 50

 startAngle: 45

 length: 270

 type: ArcType.ROUND

}

Creating JavaFX Applications

54

You can control how the arc is closed using the property type:ArcType. Supported arc
types include:

 f ArcType.OPEN—this is the default type where no segments connect the arc ends

 f ArcType.ROUND—this type draws a line segment from the start to the center and
from the center to the end of the arc (see previous image)

 f ArcType.CHORD—a straight line connects the start and end of the arc

Bézier curves
Finally, the Shape API offers two Bézier curve classes: QuadCurve and CubicCurve. The
QuadCurve class represents a quadratic Bézier curve with control points speciied by
properties controlX and controlY; the curve's endpoints are speciied by properties
startX, startY, endX, and endY (see the igure alongside). The full listing of the code
can be found in ch02/source-code/src/shapes/QuadCurveShape.fx.

QuadCurve {

 startX: 200.0

 startY: 50.0

 endX: 200.0

 endY: 150.0

 controlX: 300.0

 controlY: 100.0

}

The CubicCurve class represents a cubic Bézier curve with the two control points represented
by properties controlX1, controlY1, controlX2, controlY2; the curve's endpoints are
speciied by properties startX, startY, endX, and endY (see next igure). The full source can
be found in ch02/source-code/src/shapes/CubicCurveShape.fx.

CubicCurve {

 startX: 50

 startY: 100

 endX: 325

 endY: 100

 controlX1: 100

 controlY1: 0

 controlX2: 300

 controlY2: 200

}

See also
 f Creating complex shapes using Path

Chapter 2

55

Creating complex shapes using Path
The simple geometrical shapes offered by the Shape API may not adequately meet your
requirements. JavaFX also offers the Path­API to simplify the creation of complex and irregular
shapes using a step-wise approach of drawing shape segments. In this recipe, you will learn
how to use the Path API and its associated classes to create a complex shape.

Getting ready
Before you can draw complex shapes using JavaFX, you must know how to create a basic
JavaFX application and how to add content to the application's scene. To refresh your memory,
see recipe Building a JavaFX application from this chapter. It will also be helpful to review the
recipe Drawing simple shapes to get an idea of how the Shape API works. To use the Path
API, you will need to import classes found in the javafx.scene.shape package.

How to do it...
The next code snippet is an example of how to use the Path API to create irregular shapes.
You can ind the complete listing of this code in ch002/source-code/src/shapes/
PathDrawing.fx.

Stage {

 title: "Path Drawing"

 width: 500

 height: 300

 x:100;

 y:200

 scene: Scene {

 content: [

 Path {

 elements: [

 MoveTo { x: 150 y: 75 },

 ArcTo {x: 200 y: 50

 radiusX:25 radiusY:25 sweepFlag: true}

 MoveTo { x: 200 y: 50 },

 ArcTo {x: 250 y: 50

 radiusX:25 radiusY:25 sweepFlag: true }

 MoveTo { x: 250 y: 50 },

 ArcTo { x: 300 y: 75

 radiusX:25 radiusY:25 sweepFlag: true }

 MoveTo { x: 25 y: 75 },

 HLineTo {x: 425},

 MoveTo { x: 160 y: 85 },

 HLineTo {x: 290},

www.allitebooks.com

http://www.allitebooks.org

Creating JavaFX Applications

56

 MoveTo { x: 170 y: 95},

 HLineTo {x: 280},

 MoveTo { x: 180 y: 105},

 HLineTo {x: 280},

]

 }

]

 }

}

The previous code segment will draw the image shown in the next screenshot:

How it works...
The Path class and its associated element classes provide a small domain-speciic language
(DSL) to express complex shapes programatically. Each path element is represented by a class
with name pattern xxxTo. The Path element provides an idiom with which to express a drawing
action. An action can either move an imaginary pointer to a location on the screen, or it draws a
shape that corresponds to a primitive geometrical shape discussed in the recipe Drawing simple
shapes. The Path class serves as a container providing a property called elements where path
elements are added to the scene graph for rendering.

 f MoveTo—this path element causes the path context to be set to a coordinate from
which all subsequent drawing actions will be taken

 f ArcTo—this path element creates an arc from the last coordinate to the speciied x
and y location

 f LineTo—this path element draws a line from the last coordinate (speciied with
MoveTo) to an x and y location

 f HLineTo—this path element draws an horizontal line from the last speciied x
location to the speciied location

 f VLineTo—this path element draws a vertical line from the last speciied y position to
a newly speciied y value

See also
 f Building a JavaFX application

 f Drawing simple shapes

Chapter 2

57

Creating shapes with constructive area
geometry

JavaFX offers a rich set of tools for creating basic and complex shapes. Sometimes, though,
those drawing tools alone are not enough to express intricate and delicate shapes. In this
recipe, we will show you how to use the notion of constructive geometry to create new shapes
from the combination of existing shapes.

Getting ready
The approach covered in this recipe is known as Constructive­Area­Geometry (CAG).
It uses Boolean operations to create new shapes from existing sets of shapes. Given
shapes (or sets of shapes) represented by circles A and B, JavaFX supports the following
CAG Boolean operations:

Operation Description Shape
A OR B

(A union B)

Returns the shaded area formed by
both shapes A and B.

A NOT B

(A subtract B)

Returns the shaded area calculated by
subtracting shape A from B.

A AND B

(A intersect B)

Returns the shaded area created by the
intersection of shapes A and B.

These operations are implemented in JavaFX by classes ShapeIntersect and
ShapeSubtract, found in the package javafx.scene.shape. These two classes
are container nodes with sequence properties a:Shape[] and b:Shape[] that
represent shape set A and set B used as operands in the geometric operations.

Creating JavaFX Applications

58

How to do it...
The next code snippet uses ShapeSubtract to create a new shape using constructive area
geometry to form the dome (see the next igure). You can ind the full code in ch02/source-
code/src/shapes/ShapeIntersection.fx.

1. First, let's deine the shapes that will make up the tip of the dome:
def c1 = Circle {centerX: 175, centerY:28 radius:25}

def c2 = Circle {centerX: 225, centerY:28 radius:25}

def r1 = Rectangle {x:175 y :25 width:50 height:25}

2. Then we deine an arc for the bottom of the dome as follows:
def a1 = Arc {

 centerX:200

 centerY:149

 radiusX:100

 radiusY:100

 startAngle:0 length:180

 fill:Color.BISQUE

}

3. Next, we apply the shape operations using the ShapeSubtract.
Scene {

 width: w height: h

 fill:Color.RED

 content:[

 ShapeSubtract {a:[r1] b:[c1,c2] fill:Color.BISQUE},

 ShapeSubtract{

 a:a1

 b:[for(i in [0..3]){

 Circle {

 centerX: 125 + (i*50),

 centerY:149 radius:17}

 }]

 fill:Color.BISQUE

 }

]

}

Chapter 2

59

The executed code renders the shape shown in the following igure:

How it works...
When you combine different basic shapes, you can create completely new ones. In this
recipe, we used constructive geometry to create the dome in the previous igure. Let's
see how it was constructed:

 f Building Blocks—in the code, we declare a series of basic shapes that will be used
to construct the dome. We have circles c1 and c2, rectangle r1, and arc a1.

 f Creating the tip of the dome—the shape we are looking for can be formed by
adjoining two circles (c1 and c2) without overlapping. The pointy area between the
two circles is what we are interested in as shown in the next igure (A). The dome's
top is created in two steps:

 � First, we create a shape to serve as a mask to provide the non-
overlapping area between the two circles. In our example, we create
a small rectangle (r1) that overlaps the area between the circles as
shown in the next igure (B).

 � Next, we apply the Boolean expression r1 NOT (c1 AND c2) to
create the shape needed. We use an instance of ShapeSubtract
where property a = r1 and property b = [c1,c2]. This produces
the curvy tip shape as shown in the next igure (C).

 f Shaping the base of the dome—the dome rendered by the code shows four
semi-circle cutouts at the base of the dome. This is accomplished by dynamically
drawing four circles that are subtracted from arc a1. Here again, we use the
ShapeSubtract class with property a = a1 and property b = [Circle1,
Circle2,Circle3,Circle4].

Creating JavaFX Applications

60

There's more...
Here is some useful information to keep in mind when working with shape operations:

 f ShapeIntersect is a diminutive operation where the resulting area is smaller than
the original shapes. This will yield some interesting results when working with large
number of shapes.

 f Both ShapeIntersect and ShapeSubtract will automatically apply a union
operation to all shapes assigned to sequence property a. You can omit property
b when you want to apply the union operation.

 f ShapeIntersect and ShapeSubtract both generate new shape objects.
Therefore, color, effects, animation, transformation, and binding applied to the
original members of the sets will be lost and will not be applied to the newly
generated shape.

See also
 f Creating and using JavaFX sequences

 f Drawing simple shapes

Drawing letter shapes using the Text class
Beside geometric shapes (see the recipe Drawing simple shapes), one of the most
fundamental node types available in JavaFX is the Text node. This node is used to draw
letter shapes on the screen that can be manipulated just like other node types offered by the
JavaFX platform. In this recipe, you will learn how to work with the Text class to display text
on your application's screen.

Getting ready
Before you can draw text using JavaFX, you must know how to create a basic JavaFX
application and know how to add content to the application's scene. To refresh your memory,
see the recipe Building a JavaFX application. To display text, you will need to import the Text
class found in the package javafx.scene.text. That package also contains additional
classes to support text rendering in JavaFX including Font, FontWeight, TextAlignment,
and TextOrigin.

How to do it...
When drawing text, you simply create a text node and attach it to the scene as shown in
the next listing. You can get full listing of the code in ch02/source-code/src/text/
SimpleTextDemo.fx.

Chapter 2

61

Stage {

 title: "Text Demo"
 scene: Scene {
 width: 400
 height: 200
 content: [
 Text {
 x:50 y: 25
 wrappingWidth: 300
 font: Font {size: 28 name:"Arial Black" }
 fill:Color.BROWN
 letterSpacing:0.1
 oblique:true
 content: "This is a simple text demo."
 }
]
 }
}

This code snippet would render text content oblique as shown in the following igure:

How it works...
The Text class is a visual node intended to render textual shapes in the scene graph. It
provides powerful low-level properties and behaviors, which afford developers control over
raw text display. Let us explore the text properties used in this recipe:

 f content:String—this is the actual text that will be displayed when the scene
graph is rendered.

 f font:Font—this is an instance of the Font class which is used to specify the font
used for the rendered text.

 f fill:Color—the fill property speciies the color or effect that is applied to the
rendered font.

 f Stroke:Color—this property controls the color of the outline stroke of the letter
drawn. You can further control the stroke by applying property strokeWidth:Number
to specify the size of the outer stroke around the letter.

 f letterSpacing:Number—this property speciies the space increment
between letters.

 f oblique:Boolean—when set to true, this property attempts to algorithmically
render the font italicized, whether there is an available italic version of the font or not.

Creating JavaFX Applications

62

There's more...
There are some interesting aspects of text rendering with which you should familiarize yourself
before you leave this recipe.

Text origin
Unlike other node types, the text node has a variable coordinate system which can be
changed dynamically to accommodate where the text is rendered relative to its y coordinate
using the textOrigin:TextOrigin property. The following code snippet shows how this
works. You can get the full list in ch02/source-code/src/text/TextOriginDemo.fx.

Line{startX:50 startY:0 endX:50 endY:200 stroke:Color.SILVER}

Line{startX:0 startY:25 endX:400 endY:25 stroke:Color.SILVER}

Text {

 x:50 y: 25

 font: Font {size: 20 name:"Arial Black"}

 fill:Color.BROWN

 textOrigin: TextOrigin.TOP

 content: "This text uses TextOrigin.TOP"

}

The TextOrigin class includes the following options:

 f TextOrigin.BASELINE—with this option (default), the coordinate system for the
text originates from the bottom left-hand corner of the bounding box for the irst line
of the text. The bottom of all non-descending letters are drawn along the y coordinate
as shown in the previous igure.

 f TextOrigin.TOP—the reference coordinate for the text originates from the upper
left-hand corner of the bounding box of the text, rendering the tallest letter of the irst
line below the y coordinate as shown in the previous igure.

Chapter 2

63

 f TextOrigin.BOTTOM—with this option, the reference coordinate system for the text
starts from the lower left-hand side corner of the bounding box of last line rendering
the descending tail of the most descending letter along the y coordinate as shown in
the previous igure.

Text wrapping
By default when you use the Text class, it will render your text in a single line. If you want to
render the text in multiple lines, you have two options:

 f New Line Character—The text content can include the new line character '\n' to force
the text to explicitly wrap to the next line. When you use this approach, the bounding
box is as wide as the longest text segment.

 f wrappingWidth:Number property—the wrappingWidth property allows you
to specify the width of the bounding box for the text. The text will be wrapped at
word boundaries at the speciied width as shown in the output for the previous
code snippet.

Text alignment
With the text textAlignment property, you can inluence the text low when the text
is rendered. The next code snippet shows how to center the text within its bounding
box. You can see all alignment options shown in ch02/source-code/src/text/
TextAlignmentDemo.fx.

Text {

 x:50 y: 25

 wrappingWidth:300

 content: "This is a simple text demo."

 "It shows how the text is automatically"

 "centered using TextAlignment.CENTER"

 textAlignment:TextAlignment.CENTER

}

The code renders the text as shown:

Other supported alignments include TextAlignment.LEFT, TextAlignment.RIGHT, and
TextAlignment.JUSTIFY.

Creating JavaFX Applications

64

Embolden your font
In its declarative form, Font{name:"Arial Black" size:12}, you have to depend on
the name of the font to indicate the font's weight. However, you have the option of using
Font.font(name:String, weight:FontWeight, size:Number) function to create
an instance of the font where the font-weight can be speciied as follows:

Text {

 x:50 y: 25

 font: Font.font("Arial", FontWeight.BOLD, 28)

 content: "This is a simple text demo."

}

Using the function to create the font, you are able to specify the font's name, the font's weight,
and the size of the font in point. The FontWeight class is used to indicate the boldness of
the type used to render the font.

Locating fonts
JavaFX is capable of using True Type fonts embedded in the JavaFX application or hosted
on the target device. The JavaFX runtime will try to irst ind fonts by searching in the
application's embedded fonts, followed by a search in the JavaFX's installed fonts, and then
a inal searching within the device-installed fonts. If the font is still not found, JavaFX will default
to the runtime's default font. You can query fonts that are available for use in JavaFX using
the following methods:

 f Font.getFontNames():String[]—returns all fonts reachable by the
JavaFX runtime.

 f Font.getFontNames(familyName:String):Object[]—returns fonts that
share the speciied family name.

See also
 f Drawing simple shapes

Handling user input
As a platform designed to build rich user interface applications, JavaFX provides many
ways for users to interact with your applications. In order to implement user interactions
in your applications, at a minimum, you will have to capture key presses on the keyboard
and gestures from pointing devices. This recipe shows you how to capture keyboard and
mouse events.

Chapter 2

65

Getting ready
When a key from the keyboard is pressed or a mouse event occurs, the JavaFX application
framework will generate input events information stored in instances of KeyEvent and
MouseEvent respectively. These classes are found in the package javafx.scene.input.

Input events are sent to nodes attached to your scene graph. Therefore, in order to receive
input events, you must have at least one node added to your scene. Review the recipe
Building a JavaFX application for background information on how to do that.

How to do it...
To demonstrate how to handle user input, the abbreviated code given next creates a virtual
terminal that captures user's keyboard input (think of a command shell). The full code listing
for the code can be found in ch02/source-code/src/input/KeyboardMouseEvent.fx.

def w = 500;

def h = 300;

var text = Text {

 x: 10, y: 10

 fill: Color.LIMEGREEN

 font: Font {name: "Courier New" size: 12 }

 wrappingWidth: w - 100

};

var rect: Rectangle = Rectangle {

 x: 0 y: 0

 width: w height: h

 onMouseClicked: function (e: MouseEvent): Void {

 rect.requestFocus();

 if (text.content.length() > 0) {

 text.content = text.content.substring(0,

 text.content.length() - 1);

 }

 }

 onKeyPressed: function (e: KeyEvent): Void {

 if (e.code.equals(KeyCode.VK_BACK_SPACE)

 or e.code.equals(KeyCode.VK_DELETE)) {

 if(text.content.length() > 0){

 text.content = text.content.substring(0,

 text.content.length() - 1)

 }

 }else if (e.code.equals(KeyCode.VK_SPACE)){

 text.content = "{text.content} ";

Creating JavaFX Applications

66

 }else if (e.code.equals(KeyCode.VK_ENTER)){

 text.content = "{text.content}\n";

 }else{

 text.content = "{text.content}{e.text}";

 }

 }

};

rect.requestFocus();

When the application runs, you get a window that displays your text as you type, as shown in
the next igure:

How it works...
The code in this recipe shows you how to set up a visual node in the scene graph to receive
input events from the keyboard and the mouse. In the application, a black-illed rectangle
receives both keyboard and mouse input events, which works as follows:

 f The Text object—as the rectangle instance receives keyboard input events,
the value of the character pressed is used to update the content of text.

 f The Rectangle—as mentioned, the Rectangle is the node set up to receive input
events. Calling the Rectangle's requestFocus() method causes it to receive
keyboard events. For our example, we are using two event handling properties:

 � onKeyPressed:function(:KeyEvent)—the function assigned
to this property is ired every time a key on the keyboard is pressed
and receives an instance of class KeyEvent as an argument.
KeyEvent contains all of the information captured about the
key pressed. In this example, the function is used to process the
pressed key and update the content of the text variable.

 � onMousePressed:function(:MouseEvent)—this function
is invoked whenever the mouse button is pressed and receives an
instance of MouseEvent as an argument. In this example, when
the user clicks on the rectangle, it calls requestFocus() on
the rectangle and allows it to receive keyboard events and update
the text instance.

Chapter 2

67

There's more...
All nodes can listen for a multitude of event types. Beside the events shown in the recipe,
the next list shows additional event handlers that are common to all nodes. The name of the
handler gives a hint on how and when the event may be ired.

 f Keyboard—onKeyReleased and onKeyTyped
 f Mouse—onMouseClicked, onMouseDragged, onMouseEntered,

onMouseExited, onMouseMoved, onMouseReleased, and onMouseWheelMoved.

See also
 f Creating a JavaFX application

Arranging your nodes on stage
As your application grows in complexity, so you will ind it tedious and (most importantly)
imprecise to arrange your visual nodes directly using their x and y coordinates. This recipe
shows you how to use JavaFX's built-in support for layout managers to arrange visual
components on the screen.

Getting ready
As of version 1.2, JavaFX comes with several layout managers and each provides a different way
of arranging visual nodes on the screen. You will ind the layout managers in package javafx.
scene.layout. Of course, you must know how to create an application in order to use a layout
manager. See the recipe Building a JavaFX application for background information.

How to do it...
The following code snippet uses the the HBox and along with the VBox layout managers.
The full code listing is available in ch02/source-code/src/layout/LayoutDemo.fx.

Scene {
 content: HBox {
 width: 400
 spacing: 20
 hpos: HPos.LEADING
 content: [
 VBox {
 spacing: 5 nodeHPos: HPos.CENTER
 content: [
 Polygon {
 fill: Color.MAGENTA

Creating JavaFX Applications

68

 points: [
 10.0, 10.0,
 100.0, 100.0,
 0.0, 100.0,
 10.0, 10.0
]
 },
 Text { font: Font { size: 10 }
 content: "3-sided Polygon" }
]
 },
 VBox {
 spacing: 5 nodeHPos: HPos.CENTER
 content: [
 Arc {
 radiusX: 45
 radiusY: 45
 startAngle: 90
 length: 270
 type: ArcType.ROUND
 fill: Color.RED
 },
 Text { font: Font { size: 10 }
 content: "L-shaped red arc" }
]
 },
 VBox {
 spacing: 5 nodeHPos: HPos.CENTER
 content: [
 Circle {
 centerY: 100
 radius: 45
 fill: Color.SILVER
 },
 Text { font: Font { size: 10 }
 content: "A silver circle" }
]
 }
]
 }
}

When the code is executed, it renders the following screen:

Chapter 2

69

How it works...
The layout manager controls how components are arranged and laid out when rendered. A
layout manager affords developers the ability to declaratively arrange nodes without having
to worry about positional math and re-low rules. The components are laid out according to
the rules applied by the layout managers.

The code listing for the recipe uses the HBox in conjunction with the VBox layout managers
to create the output shown in the previous screenshot. Let's examine how this works.

 f Splitting up the scene—irst, the HBox layout manager is used to split the scene
horizontally into three cells (see next screenshot). This is done by placing an instance
of the HBox class as the content of the Scene. Each item added to the content of the
HBox layout manager is placed along the x-axis and is equally spaced (controlled by
the spacing property).

 f Nesting layout—the items placed in the HBox content can either be a visual node or
another layout manager node (you have got to love scene graph!). This allows us to
nest an instance of VBox in each cell of the HBox, as shown in the next screenshot.
The VBox lays out its content vertically, and we use it to stack a shape and a text
node that describes the shape.

There's more...
JavaFX 1.2 offers several other managers to help developers quickly arrange nodes:

 f Flow—lays out content vertically or horizontally (depending on the selected
orientation). The manager automatically lows to the next column (or row).

 f Stack—this layout manager stacks its content in z-plane going from back to front.

 f Tile—lays out its content uniformly vertically or horizontally, where each node
receives the same dimension in the tile (think of a HTML table).

Future versions of the platform will surely include more layout managers and options.

Creating JavaFX Applications

70

See also
 f Creating a JavaFX application

Making your scripts modular
As your code grows in complexity, you will ind it necessary to arrange your scripts into
well-organized modular structures. This will help your codebase to scale in size to handle
organizational complexities. This recipe addresses the facilities and practices available for
JavaFX to implement code modularization.

Getting ready
The concepts presented here deal with logical modularity of your code (physical modularity,
creating jars, is covered in Chapter 7, Deployment and Integration). JavaFX provides
high-level abstractions to represent code organization including packages, modules, and
classes. If you have written code in other high-level languages, you will be familiar with the
concepts presented here. For background information, see http://en.wikipedia.org/
wiki/Modular_programming.

How to do it...
To illustrate JavaFX modularization, we will create a script module and use its members to
show how modules expose their members. The full code listing for this recipe can be found
in ch02/source-code/src/module/FooBarModule.fx.

1. First, create a script ile called FooModule.fx.

2. Next, add the members of the module as shown in the next listing:

public-read def size = Long.MAX_VALUE;

public var seed = Integer.MAX_VALUE;

class PrivateBar {

 function genId(): Number {

 new Random().nextInt(seed);

 }

}

public class Bar {

 def pb = PrivateBar{};

 public function print(): Void {

Chapter 2

71

 println("This is a bar with id {pb.genId()}");

 }

}

class Foo {

 public function print(): Void {

 println("The foo is {size} nibblets big!");

 }

}

public function makeFoo(): Void Foo ({

 Foo { };

}

3. Once you have created the script module, you can reuse the module anywhere in
your code. You can see the usage of the module in ile ch02/source-code/src/
module/ModuleDemo.fx as shown next:

println ("FooBar seed = {FooBarModule.seed}");

println ("FooBar size = {FooBarModule.size}");

FooBarModule.seed = 200000;

def bar = FooBarModule.Bar{};

bar.print();

FooBarModule.callFoo();

How it works...
A module is a standalone JavaFX script ile that contains deinitions for classes, functions,
and variables. Let's examine the module presented in this recipe:

 f Script-level­members—a module is comprised of both public and script-scoped
members, including variable declarations, class deinitions, and functions. Public
members can be reached by code outside of the module such as variables size,
seed, and class Bar. Script-only members (those with no access modiiers) can
only be accessed by members of the module (such as class Foo).

 f Class­deinitions—classes marked as being public are reachable by client code
both inside and outside of the module. A script-only class deinition is accessible
only by members in the same module. For instance, class Foo can only be accessed
by other members in the module.

 f Function­members—JavaFX functions can also be deined as top-level members of
a module. Functions marked public can be reached by client code outside of the
module while script-only functions are only visible to members of the same module.

Creating JavaFX Applications

72

 f Module­variables—as a code unit, a module can also include top-level variable
declarations. Beside the regular public scope, variables can also be marked
public-read which indicates a read-only public variable (such as the size
variable in the code). Script-only variables are only available to members of
the module.

You can read more about access modiiers in the There's more section next.

There's more...
Before leaving this recipe, we should take a closer look at some important topics related to
the material that we just covered.

Script versus module
How do you know when a ile is a script or a module? Well, there are some rules that deine
the qualiications:

The following rules qualify a ile as a regular script:

 f A script can have classes, functions, and variable members
 f A script can have dangling expressions (outside of a function or class code block)
 f A script cannot have any public variable members
 f A script can include the special function run() to launch it

A script ile is a module that has the following:

 f A module can have classes, functions, and variable members
 f A module cannot have dangling expressions (all expressions are in classes or

function code blocks)
 f A module can have public variable members
 f A well-designed module should not implement the function run()

Organize your code into packages
Similar to Java, JavaFX script iles can be further organized as packages. A package is simply
a directory structure where you can arrange your scripts, modules, and other resources in a
way which provides separation and grouping structures. To create a package, you create the
directory structure relecting how you want your script iles to be organized.

The structure of the directories translates into the dot notation of the package name. For
instance, if you nest your directories as com/mycompany/anim, then your package is
com.mycompany.anim. Scripts and modules that belong to a package must declare their
membership with the statement package com.mycompany.anim. Client code interested
in using items in the package must import the package using the statement import com.
mycompany.anim.

Chapter 2

73

Access modiiers
Let's take a closer look at the access modiiers supported in JavaFX. Access modiiers allow
you to control the visibility of script-level and class-level members.

Access­modiier Description Location
default The default (or script-only) is applied when no

modiier is speciied. This means that the member is
accessible by other members in the same script or
module ile. This applies to variables, functions, and
classes.

Script, module.

public This member is visible from anywhere in the
application. The modiier can be applied to variables,
function, and classes.

Module, class.

public-read This member is public but it is read-only. This modiier
applies to only variable members.

Module, class.

public-init This member has public visibility. This modiier
applies to only variables. It indicates that the member
can be initialized in an object literal declaration.

Class.

protected This member is visible to other code in the same
package or sub-classed code. Modiier applies to
variables and function members.

Script, module, class.

package This members are visible to other code in the same
package. This applies to variables, functions, and
classes.

Script, module, class.

See also
 f Declaring and using JavaFX classes

 f Creating and using JavaFX functions

Creating your own custom node
Part of the fun in working with JavaFX is the ease with which you can create your own visual
components. As your needs outgrow the basic nodes that are available, you will ind it
necessary to create new components that capture more complex interactivity behaviors and
functionalities. In this recipe, we will explore how to create customized graphical nodes that
can be used wherever you can attach a node to the scene graph.

Creating JavaFX Applications

74

Getting ready
Before you can create customized nodes, you must be familiar with the basic shapes and
text nodes presented in previous recipes. If you are not familiar with the materials, review the
recipes Drawing simple shapes and Drawing letter shapes using the Text class. Also, take a
look at recipe Handling user input in this chapter to review how to handle user interactivity.

A custom node works just like any other JavaFX node and can be added to a scene graph. To
create customized nodes, you will need to import the classes Node and CustomNode found
in the package javafx.scene. You will also ind it helpful to use the Group class (from the
same package) to aggregate nodes that make up your custom node.

How to do it...
The code presented here shows you how to extend the CustomNode class to create a new
node. In this case, the node is a simple button in the shape of a circle with mouse interactivity
behaviors. You can see the full code listing in ch02/source-code/src/custom/
CustomNodeDemo.fx.

class MessageButton extends CustomNode{

 public-init var message:String = "Hello!";

 public var xloc = 10;

 public var yloc = 10;

 public var size = 30;

 public var font:Font = Font{name:"Arial" size:12}

 override protected function create () : Node {

 def circle = Circle {

 centerX: bind xloc;

 centerY: bind yloc;

 radius: bind size/2;

 }

 def text:Text = Text{

 font:font

 content:message

 textOrigin:TextOrigin.TOP

 wrappingWidth: bind size;

 fill:Color.WHITE

 };

 text.x = xloc - (text.boundsInLocal.width/2);

 text.y = yloc - (text.boundsInLocal.height/2);

 Group{

 content:[circle,text]

 onMouseEntered:function(e:MouseEvent){

 circle.scaleX = 1.25;

Chapter 2

75

 circle.scaleY = 1.25;

 }

 onMouseExited:function(e:MouseEvent){

 circle.scaleX = 1.0;

 circle.scaleY = 1.0;

 }

 }

 }

}

Now, to use the custom node, we simply place it in the scene graph like any other node.

Scene {

 content: [

 MessageButton {xloc:100 yloc:100 size:50

 message:"Hello, World!"}

 MessageButton {xloc:200 yloc:100 size:100

 message:"We've Made It!"}

]

}

This would create two buttons as shown in the next igure:

How it works...
To create a customized node, you simply extend the abstract class CustomNode. As you may
have guessed, CustomNode is a special class recognized by the JavaFX scene graph engine.
You must implement (and override) function create():Node in your node class. During
the rendering of the scene, the engine will invoke this function to get an instance of a node
that represents your custom component to be rendered.

In our example, the create() method returns an instance of class Group, a generic
container node that lets you create a branch of leaf nodes (sub-tree) to be attached to a scene
graph. Grouping your nodes allows you to treat all node members of the group as one unit. In
our example, we deine two mouse event handlers (onMouseEntered and onMouseExited)
on the group. Therefore, all members of the group will respond to the mouse events.

Creating JavaFX Applications

76

There's more...
CustomNode and all other node types share a common ancestor, the Node class. Therefore,
your custom node has access to all of the positional, effects, transformation, animation
properties, and functionalities exposed by the Node class. Nodes can also receive keyboard
and mouse events, including key up, key down, mouse up, mouse down, mouse pressed, and
so on.

Deining your own node also means that you can place your custom component anywhere
in the scene graph including directly on the scene, in a group, participate in layout, and be a
branch node to other nodes. If you are building a composite node that consists of more than
one node, group them in a branch node such as Group, Layout, Panel, and so on and the
branch node from the create() function.

See also
 f Declaring and using variables

 f Declaring and using JavaFX classes

 f Handling user inputs

 f Making your scripts modular

Controlling your application's window style
As we have seen in the previous recipe, Building a JavaFX application, the Stage represents
the outer-most window of a desktop application. The stage encapsulates many properties
that control how the window is styled on the screen. This recipe explores how to control and
change the style and behavior of your application's window.

Getting ready
Window style, in this recipe, refers to the border decoration that goes around the application
window displayed on the screen. In this context, style does not refer to other attributes such
color, size, and so on. Using the style attribute of the window, for instance, you can make a
chromeless window: that is, when the border and all other window controls are removed from
the window.

How to do it...
To change the style of your application's window, you set the value of the style property
of the Stage as shown next. The full listing of the code for this recipe can be found in ch02/
source-code/src/application/StageStyleDemo.fx.

Chapter 2

77

Stage {
 title : "Stage Style"
 width: 300
 height: 200
 StageStyle.TRANSPARENT;
 scene: Scene {
 fill:Color.GRAY
 content: [
 Rectangle {
 x: 100 y: 50
 width: 100 height: 100
 arcWidth: 10
 arcHeight : 10
 fill: Color.RED
 },
 Text {
 content: "Stage\nStyle"
 x:110 y:60
 fill: Color.WHITE
 font:Font {size: 16}
 }
]
 }
 onClose: function():Void {
 Alert.inform("You are about to quit the application.");
 }
}

The given code produces an application within a window with transparent border, as shown in
the next image:

How it works...
The style property of the Stage allows you to control the look of the window's border. The
code in the recipe sets the style to TRANSPARENT. The transparent style removes all lines
around the window's edge. This produces an application window with no controls and a zero
pixel-width border around the window, as shown in the previous image.

Though the effect produced by this style is nice, there is, however, no
way for the user to grab, move, or close the window. You must explicitly
provide window controls yourself when you style the stage.

Creating JavaFX Applications

78

There's more...
The style property of the Stage class is of type StageStyle, which exposes two other
predeined styles including:

 f StageStyle.DECORATED—this style produces a normal window decorated with
a border and window controls such as the minimize, maximize, and close buttons.
This is the default style for the stage.
When the window's border is decorated, you can also control whether the window
can be resized using the stage's Boolean property called resizable.

 f StageStyle.UNDECORATED—this style is the opposite of decorated. It removes
the window's border decoration leaving only a thin line around the window's edge.

When you use this style, ensure that you provide your users with a way to close and
drag the application's window.

Controlling opacity
You can also control the opacity of your application's window on the desktop. Here's how to
do it:

Stage {
 title : "Border Style"
 style: StageStyle.TRANSPARENT;
 opacity: 0.5
 scene: Scene {
 content: [
 ...
]
 }
}

The opacity property is a decimal value ranging from 0.0 to 1.0 where 0.0 means
complete transparency and 1.0 means full opacity. The next screenshot shows a window
with an opacity value of 0.5. Notice the content of other application bleeding through the
application's content.

See also
 f Building a JavaFX application

Chapter 2

79

Going full-screen
A popular way of running media-rich applications is the use of the full-screen theater mode.
This is a great way to grab the user's attention by hiding all other applications and place the
focus on your application's content. This recipe shows you how to accomplish the same effect
by running your application in full-screen mode.

Getting ready
There is not much in prerequisite for this recipe. You do, however, need to know how to create
a basic JavaFX application and know how to add content to the stage. To refresh your memory,
see Building a JavaFX application.

How to do it...
To go full-screen, you simply set the Boolean value of the fullScreen property on the Stage
object to true as shown in the partial listing given next. You can see the full code listing for
this recipe at ch02/source-code/src/application/FullScreen.fx.

Stage {
 title : "Going Full Screen"
 width: 300
 height: 200
 fullScreen:true
 scene: Scene {
 content: [
 Rectangle {
 x: 100 y: 50
 width: 100 height: 100
 arcWidth: 10
 arcHeight : 10
 fill: Color.RED
 },
 Text {
 content: "Full\nScreen"
 x:110 y:60
 fill: Color.WHITE
 font:Font {size: 16}
 }
]
 }
onClose: function():Void {
 Alert.inform("You are about to quit the application.");
 }
}

When you run this code, it will start the application immediately in full-screen mode, hiding all
other content on your desktop.

Creating JavaFX Applications

80

How it works...
When you set the value of the fullScreen property of the stage to true, JavaFX will put the
application in full-screen mode with an undecorated window (see Controlling your application's
window style earlier in this chapter). Depending on the platform's implementation of the
full-screen mode (desktop or mobile), JavaFX will attempt to go into Full-Screen­Exclusive­
Mode (FSEM), where the application window covers the entire screen, and all other running
applications are placed in the background. If the platform does not support FSEM, JavaFX will
run the application in a simulated full-screen mode, where the window will be placed in the
foreground and maximized to full-screen dimensions with an undecorated window.

Here are the application's behaviors when going full-screen:

 f The application will be restored to its last (pre-full-screen) window size when the user
presses the escape (Esc) key at any time in the application.

 f When the application goes into full-screen mode, the following properties will keep
their original (pre-full-screen) values:

 � width and height values
 � x and y coordinates
 � iconified and resizeable states
 � style and opacity values

 f When the application goes into full-screen mode, the opacity value is ignored and
the stage is set to 100% opacity.

 f The application will retain its full-screen mode when made invisible. Changing the
visibility value will bring the application back to visible mode.

There's more...
While in full-screen, your users have unrestricted access to all functionalities of your
application. However, unsigned applications launched as WebStart or running as Applets
(see Chapter 7, Deployment and Integration) will have the following limitations in full-screen:

 f Only a mouse event (onMouseClick, onMousePressed, and so on) can put the
application in true FSEM. This is a security measure ensuring that only an action
from the user will put the application in full-screen.

 f If the screen is placed in true FSEM, users will only be allowed to use certain keys
limited to up, down, left, right, Page Up, Page Down, Tab, Home, End, Enter, and
Esc (mouse gestures are still allowed).

See also
 f Controlling your application's window style

3
Transformations,
Animations, and

Effects

In this chapter, we will cover the following topics:

 f Modifying shapes with the Transformation API

 f Creating simple animation with the Transition API

 f Composing animation with the Transition API

 f Building animation with the KeyFrame API

 f Creating custom Interpolators for animation

 f Morphing shapes with the DelegateShape class

 f Using data binding to drive animation sequences

 f Applying cool paint effects with gradients

 f Creating your own customized Paint

 f Adding depth with lighting and shadow effects

 f Creating your own Text effect

 f Adding visual appeal with relection

Transformations, Animations, and Effects

82

Introduction
This chapter is about pure, unadulterated eye candies. In previous chapters, you were
introduced to the fundamentals of the language and framework. Now, it's time to explore
the fun side of JavaFX. You will learn how to use transformation techniques to manipulate
the location and dimension of objects in the scene. You will learn how to use JavaFX's
Animation API to animate objects in order to create compelling content. Finally, you will
learn how to make your objects visually appealing by applying paint and effects to
your objects.

The JavaFX animation framework
Let's take a quick look into the animation framework before we move on. The built-in
animation framework allows developers to animate an object easily using JavaFX's declarative
syntax. You simply describe the state of the object at certain keyframes in the sequence, and
the animation engine ills in the rest of the frames.

JavaFX supports two types of animations including transition- and keyframe-based
animations. Transition­animations are prepackaged sequences that animate a given property
(dimension, opacity, location, and so on). Keyframe­animation provides total control over the
animation by exposing a complete idiom to express the animated sequence declaratively with
timelines and keyframes.

Lastly, JavaFX's Animation API makes use of the built-in Duration type to represent time
periods used in animation sequences (see Chapter 1, Creating and Using Variables). The
Duration type provides a literal that provides a natural representation of time by specifying
a number and a time unit together as shown in the next code snippet. For instance, the
following code snippet expresses two minutes (see full code at ch03/source-code/src/
DurationTest.fx).

var twoMinutes = 0h + 1m + 30s + 30000ms;

if(twoMinutes != 2m) println("Assertion failed");

if(twoMinutes != 120s) println("Assertion failed");

if(twoMinutes != 120000ms) println("Assertion failed");

Modifying shapes with the Transformation
API

There will be a time when you will want to modify the shape of your objects into something
completely different. You can tediously update positional or dimensional properties one
by one, or you can use the Transformation­API. This recipe shows you how to use the
Transformation API to transform a shape's physical properties declaratively and effortlessly.

Chapter 3

83

Getting started
Before you can apply transformations to shapes, you must be familiar with the steps required
to create simple shapes using JavaFX. See Drawing simple shapes from Chapter 2, Creating
JavaFX Applications for background information on creating simple shapes.

The classes for the Transformation API are kept in the package javafx.scene.
transform. You will ind several classes there used for different types of transformation,
including Rotate, Scale, Shear, and Translate.

How to do it...
To demonstrate the Transformation API, the next code snippet shows the usage of both the
Translate and the Scale transformations on a Rectangle shape. You can get the full
code listing from ch03/source-code/src/transformation/TransformDemo.fx.

def w = 400;

def h = 200;

def rect:Rectangle = Rectangle {

 x: 0 y: 0

 width: w - 300

 height: h - 150;

 fill: Color.BLUE;

 stroke: Color.WHITE;

 strokeWidth: 3

 onMouseClicked:function(e:MouseEvent){

 rect.transforms = [

 Translate{x: e.x y:e.y}

 Rotate{angle:45}

];

 }

 }

When the code runs and the Rectangle instance (Figure A) receives a mouse-click event, it
applies both Translate and Rotate transformation operations as shown in Figure B.

Transformations, Animations, and Effects

84

How it works...
The JavaFX Transformation API applies operations that transform the geometric properties of
the target shapes relative to their current spatial attributes. All node instances in the scene
graph are capable of receiving transformations. In the previous example, we are applying two
transformation operations to the rectangle: Translate and Scale. As of version 1.2, the JavaFX
SDK provides the transform operations listed next. You can ind an example of their usage at
ch03/source-code/src/transformation/.

 f Translate—shifts all x and y points of the node to new co-ordinate space relative to
its original co-ordinate space.

 f Scale—stretches (scales) the dimension of a node by a speciied factor. The number
speciied in the scale operation is a multiplier, not a dimension.

 f Shear—all points along the speciied axis remain constant while the parallel side is
shifted by a given factor.

 f Rotate—rotates a node for the speciied number of degrees about a given
pivot point.

You can instantiate transformation classes using the object literal form (as shown in
the previous example), or you may use class-level functions from Transform including
Transform.translate(), Transform.scale(), Transform.shear(), and
Transform.rotate().

In the code snippet for this recipe, we apply the transformation operations using the
transforms:Transform[] property. This approach allows you to attach several
transformations to the target shape. In this example, the transforms sequence is applied
when the shape receives a mouse event.

There's more...
Besides the transforms sequence property discussed earlier in this recipe, the Node
class (inherited by all shapes) also exposes individual properties to apply the transformation
operations, shown next:

 f translateX or translateY—these properties allow you to specify a value used to
shift the node's co-ordinate space along the x or y axis

 f scaleX or scaleY—this value is used as a factor to scale the dimension of the
object along the x or y axis about the center of the object

 f rotate—this value is the degree used to rotate the object about its center

See also
 f Chapter 2—Drawing simple shapes

Chapter 3

85

Creating simple animation with the
Transition API

As you read this chapter, you will ind out that JavaFX provides a powerful animation engine
that lets you create complex sequences (see the Introduction). However, if your need is to
create simple straightforward animated sequences, JavaFX has got you covered. In this recipe,
we will explore how to create simple animations quickly using the JavaFX Transition­API.

Getting ready
Before you can create transition-based animations, you must be familiar with the steps
required to create simple shapes using the Shape API. See Chapter 2, Drawing simple
shapes for background information on creating simple shapes.

All of the classes provided by the Transition API are located in the package javafx.
animation.transition. There you will ind several classes representing the type
of animations they support, including TranslateTransition, ScaleTransition,
PathTransition, FadeTransition, and RotateTransition.

The next code snippet shown will use an instance of PathTransition to demonstrate the
simplicity and lexibility of the API. The PathTransition class makes use of the Path API,
which was discussed in Chapter 2, under the recipe Creating complex shapes using Path, to
animate an object along a speciied path.

How to do it...
The next code snippet shows you how to use the PathTransition API to animate an object
along a speciied path. The full code listing can be accessed from ch03/source-code/src/
animation/trans/PathTransitionDemo.fx.

def w = 400;

def h = 200;

def r = 30;

def mv = 60;

def circle = Circle {

 centerX: 0; centerY: 0 radius: r

 fill: Color.BLUE stroke: Color.WHITE strokeWidth: 3

}

var path = Path {

 elements:[

 MoveTo{x:0 y:0}

 HLineTo { x: mv}

Transformations, Animations, and Effects

86

 VLineTo { y: h }

 HLineTo { x: mv * 2}

 VLineTo { y: 0 }

 HLineTo { x: 3 * mv}

 VLineTo { y: h/2 }

 MoveTo{x: 3 * mv y: h/2}

 ArcTo {

 radiusX: 20

 radiusY: 20

 x: 5 * mv y:h/2

 sweepFlag:true

 }

]

}

PathTransition {

 node: circle

 duration: 5s

 path:AnimationPath.createFromPath(path)

 repeatCount: FadeTransition.INDEFINITE autoReverse: true

}.playFromStart();

When the application is executed, the circle moves from the left-hand side of the screen to
the right-hand side, following the path described by the path elements declared in the Path
instance. The next igure shows an outline of the animated path that the circle follows.

How it works...
Using transition-based animation is a simple and easy way to quickly get started with
animation in JavaFX. A transition class provides a canned timeline that animates speciic
node properties including position and dimension over a given time period. All transition
classes expose timeline controls by allowing playback, repeat count, and auto-reverse.

Chapter 3

87

The code snippet makes use of the Path API and the PathTransition class to move the
circle along a speciied path. Let's take a closer look at the previous code.

 f Animated subject—irst, the code declares the node that will be animated. In
this instance, it is a Circle. Notice that the node carries no information about the
animation. There is a clear separation between the animated subject and the process
that drives the animation.

 f Path description—the PathTransition class makes use of the Path API to specify
the path along which the animated subject will be displaced. The API provides an
idiom to describe different segments of the path using path element classes. For
more details about the Path API, have a look at the See also section following shortly.

 f Animation setup—once we have an animation subject and animation path, we are
ready to set up the animation. We declare an instance of PathTransition and
use its node property to specify the subject being animated. Then, to resolve the
path of the animation, we use an instance of another class named AnimationPath
and its function createFromPath(path:Path) to transform the Path instance
into coordinates for the animation sequence.

 f Animation control—once the the instance of the transition class is declared, we can
use the function playFromStart() to start playing the animation as shown in the
code. When the property autoReverse:Boolean is set to true, it causes the play
head to restart the animation when the end of the sequence is reached. The property
repeatCount:Number is used to indicate the number of times the animation is
repeated. A value of PathTransition.INDEFINITE causes the playback to
repeat indeinitely, as exempliied in the code.

There's more...
Before we exit this recipe, let's take a look at the other transition classes provided by JavaFX.
You can see examples of all of the transition classes in the package ch03/source-code/
src/animation/trans/.

TranslateTransition—shifts the target
node from its origin to the speciied x and y
coordinates

TranslateTransition {

 node: circle

 duration: 3s

 toX:100 toY:300

}

ScaleTransition—enlarges or shrinks the
dimensions of the node by the speciied factor

ScaleTransition {

 node: circle

 duration: 3s

 fromX:0.5 fromY:0.5

 toX:3 toY:3

}

Transformations, Animations, and Effects

88

RotateTransition—rotates the node using
the speciied angle value around a given pivot

RotateTransition {

 node: circles

 duration: 1s

 byAngle:360

}

FadeTransition—animates the node's
opacity value over the speciied time

FadeTransition {

 node: circle

 duration: 3s

 fromValue: 1.0

 toValue: 0.25

}

The Timeline
The transition classes are an implementation of the Timeline class that provides ways to
control keyframes generated during the animation. Here are some of the control functions
which are available on all transition classes:

 f play()—this function plays the animation from the last stopped time location and
the last set direction.

 f playFromStart()—similar to play(), this function plays back the animation.
However, it resets the animation's playback time to zero (0) and plays in the
forward direction.

 f pause()—the pause() function stops the playback of the animation. The current
time position is retained. The next call to play() will resume from the last paused
time position.

 f stop()—this function stops the animation's playback as well. However, it resets the
time position to zero and sets the direction to forward.

The following are some important properties exposed by the Timeline class that you should be
aware of when building animations:

 f rate:Number—this property is a multiplier for the playback speed. A rate of 0.0
indicates normal playback, while 2.0 plays twice as fast, and so on. A negative rate
(-0.0 for instance) plays the animation in reverse at the indicated rate.

 f framerate:Number—this ratio indicates the number of frames played per second
for an animation.

 f time:Duration—this property indicates the position in time, in the sequence,
where the animation will start when play() is invoked.

 f repeatCount—the number of times the animation will repeat after the playback
reaches the end. Setting this value to Timeline.INDEFINITE will repeat the
animation until pause() or stop() is invoked.

 f autoReverse—play the animation backward at the end of a sequence.

Chapter 3

89

See also
 f Chapter 2—Drawing simple shapes

 f Chapter 2—Creating complex shapes using Path

Composing animation with the
Transition API

In the recipe Creating simple animation with the Transition API, we explored how to animate
an object using one of the transition classes. What if, however, you want to create more
complex animation sequences composed of multiple transition steps? This recipe shows
you how to use the Transition API in order to create more elaborate animation sequences
composed of multiple transition classes.

Getting ready
In order to follow this recipe, you must know how to create shapes and animate them using the
Transition API. For an introduction on the API, refer to the recipe Creating simple animation with
the Transition API. Again, all of the transition classes provided by the Transition API are located
in the package javafx.animation.transition. For this recipe you will use the class
ParallelTransition to compose multi-step, transition-based animation sequences.

How to do it...
The abbreviated code snippet given next shows you how to use the ParallelTransition
class to create animation sequences. You can get the complete listing of the code from ch03/
source-code/src/animation/trans/ParallelTransitionDemo.fx.

def w = 400;

def h = 200;

def r = 25;

def circles = Group{

 content:[

 Circle {

 centerX:0 centerY:(h / 2) radius:r

 fill:Color.BLUE stroke:Color.WHITE

 strokeWidth:3

 }

 Circle {

 centerX:2*r centerY:(h / 2) radius:r

 fill:Color.BLUE stroke:Color.WHITE

Transformations, Animations, and Effects

90

 strokeWidth: 3

 }

]

}

def rect = Rectangle {x:10 y:10 width:50 height:20 fill:Color.RED}

ParallelTransition {

 content: [

 RotateTransition {

 node:circles duration:1s byAngle:360

 repeatCount:FadeTransition.INDEFINITE

 autoReverse:true

 }

 TranslateTransition {

 node:circles duration:3s byX:w/2

 repeatCount:FadeTransition.INDEFINITE

 autoReverse:true

 }

 TranslateTransition {

 node:rect duration:3s

 byY:h-30

 repeatCount:FadeTransition.INDEFINITE

 autoReverse: true

 }

]

}.play();

When the application is executed, the circles are animated from left to right, while the
rectangle moves from top to bottom simultaneously, as illustrated (as well as possible)
in the next igure:

Chapter 3

91

How it works...
Using transition-based animation is a simple and easy way to get started quickly with building
animation sequences. Recall that a transition class provides a canned timeline that animates
speciic attributes on a node, including position and dimension. This recipe makes use of the
ParallelTransition class. This is a special transition class used to compose animation
sequences by animating simpler transition sequences in parallel. Let's examine how the code
snippet works.

 f Animated subject—in this recipe, there are two subjects being animated. The irst one
is a Group instance named circles that is composed of two adjoining circles. The
other subject is a Rectangle (rect) instance.

 f Animation setup—the animation is driven by an instance of ParallelTransition.
This is a specialized transition class used as a container for other transition sequences.
It provides a way to declaratively compose elaborate animation sequences by
assembling together simpler animation transitions running in parallel.

 f Animation sequences—the ParallelTransition class is used to drive three transition
sequences on two objects:

 � circles—the group of circles rotate 360 degrees using the
RotateTransition for a period of one second. While the
circles rotate, they are also translated for three seconds from
the left-hand side to the right-hand side of the screen using the
TranslateTransition method.

 � rect—the other instance of TranslateTransition is used
to animate the rectangle on the stage from the top of the screen
toward the bottom for a period of three seconds.

 f Animation playback—when the play() function is invoked on ParallelTransition,
it starts the animation in parallel for each individual transition that it contains. Each
transition element applies control properties from their own timeline, honoring its
repeatCount and autoReverse properties respectively. This is to allow each
timeline to move independently and in parallel.

There's more...
The JavaFX animation framework also offers a SequentialTransition class to
compose animation sequences that are played serially (as opposed to parallel). Similar
to the ParallelTransition class, the SequentialTransition class allows you to
compose animation using a collection of simpler transition classes. Unlike the parallel
animation sequence though, each sequence plays one after the other. The next snippet
shows how we can animate the same objects presented in the recipe earlier using the
SequentialTransition class. The full code can be found in ch03/source-code/src/
animation/trans/SequentialTransitionDemo.fx.

Transformations, Animations, and Effects

92

SequentialTransition {

 content: [

 RotateTransition {

 node: circles

 duration: 1s

 byAngle:360

 }

 TranslateTransition {

 node: circles

 duration: 3s

 byX:w/2

 }

PauseTransition{duration:1.5s}

 TranslateTransition {

 node: rect

 duration: 3s

 byY:h-30

 }

]

 }.play();

You should note the following:

 f The SequentialTransition class will play each animation in the order they
appear in the content property.

 f Individual transition class that is part of a SequentialTransition sequence
should not control the playback with repeatCount=SequentialTransition.
INDEFINITE. This will cause the transition to be stuck and not yield to
other sequences.

 f You can insert a pause time period in the sequence using the PauseTransition
class. As its name implies, it allows you pause the playback sequence for the
speciied time.

See also
 f Chapter 2—Drawing simple shapes

 f Chapter 3—Creating simple animation with the Transition API

Chapter 3

93

Building animation with the KeyFrame API
While transition-based animation classes provide a quick and easy way to animate objects in
the scene graph, they expose little control over the way the animation steps are constructed.
For instance, when you build an animation sequence with the TranslateTransition
class, you can only specify the origin and the destination points of the object. The class
automatically ills in the frames in between. This recipe covers keyframe-based animation
techniques. Using this approach, developers are able to take full control over the animation
sequence by specifying the keyframes that make up the animation.

Getting ready
Although optional, it is helpful to be familiar with the transition-based animation presented
in the recipe Creating simple animation with the Transition API, as it includes valuable
information about animation and animation controls. Creating keyframe animation involves
two main classes, Timeline and KeyFrame, found in the package javafx.animation.
Timeline provides overall control of the animation, while KeyFrame lets you assemble the
granular steps that make up the animation.

How to do it...
To create keyframe-based animation, you can declaratively build your timeline by adding
keyframes that describe the steps of your animation. To illustrate how to use keyframe
animation, we will build a simple game where the objective will be to use a paddle that is
moving from side-to-side on the screen to hit a ball. When the paddle hits the ball, you get
one point. Since the code is rather long, it will be presented in chunks. You can get the full
code listing from ch03/source-code/src/animation/KeyFrameAnimDemo.fx.

1. Let's irst declare some variables to be used later in the code.
def w = 400;

def h = 200;

var rad = 15.0;

var cx = w / 2;

var cy = h - rad;

var scoreCounter = 0;

def paddleTime = 0.5s;

2. Next, we declare the objects used to display the score.
def score = Text {

 textOrigin: TextOrigin.TOP x: w / 2 y: h / 2

 font: Font.font("Helvetica", FontWeight.BOLD, 48)

 content: bind "{scoreCounter}"

Transformations, Animations, and Effects

94

 visible: false

}

def scoreAnim = Timeline {

 keyFrames: [

 at (1s) {

 score.scaleX => 3;

 score.scaleY => 3;

 score.opacity => 0.0;

 score.visible => false

 }

]

 }

3. Next, we declare objects to display and animate the paddle on the screen.
def paddle: Rectangle = Rectangle {

 x: 10 y: 10 width: 50 height: 10

 fill: Color.BLUE stroke: Color.WHITE strokeWidth: 3

}

def paddleAnim = Timeline {

 autoReverse: true

 repeatCount: Timeline.INDEFINITE

 keyFrames: [

 KeyFrame{

 time:paddleTime values:paddle.translateX => 350

 }

]

}

paddleAnim.play();

4. Lastly, we declare the objects to display and animate the ball.

def ball:Circle = Circle {

 radius: bind rad

 centerX: bind cx;

 centerY: bind cy;

 fill: Color.RED

 stroke: Color.WHITE

 strokeWidth: 3

Chapter 3

95

 onMousePressed: function (e: MouseEvent) {

 ballAnim.playFromStart();

 }

 }

var ballAnim: Timeline = Timeline {

 keyFrames: [

 KeyFrame {

 time: 200ms

 values: [cy => 5 tween Interpolator.EASEIN]

 action: function () {

 if(ball.intersects(paddle.boundsInParent)){

 scoreCounter++;

 score.visible = true;

 scoreAnim.playFromStart();

 }

 }

 }

 KeyFrame{

 time: 500ms

 values: [

 cy => (h - rad) tween Interpolator.LINEAR

]

 }

]

}

When all the objects are added to the stage and the code is executed, you should get
something that looks like the next screenshot.

Transformations, Animations, and Effects

96

How it works...
As mentioned earlier, the two main classes involved in creating keyframe-based animation
are Timeline and KeyFrame. These classes provide the necessary idiom to express the
video-timeline metaphor, as shown in the next igure.

Each timeline is composed of a collection of one or more keyframes (kf1 to kfN). Each
keyframe speciies a duration (ti) and the values to be interpolated during that time. The
animation engine automatically calculates the in-between values for interpolation. Because
the time value of each keyframe may overlap each other, the length of an animation sequence
is determined by the keyframe with the latest time period. Hence, in the previous igure, the
animation length is t4 (not the cumulative total).

The declarative syntax for creating timeline animation is as follows:

Timeline {

keyframes:[

KeyFrame:{

 time:animation_duration

 values:[interpolation_expression]

 action:function():Void

}

]

}

where

 f Timeline—stores keyframe instances in its keyframes property. It also controls and
manages the animation's playback.

Chapter 3

97

 f KeyFrame—this class represents a keyframe in the animation sequence with the
following properties:

 � time:Duration—the time period used for the extrapolation of
in-between frames for the animation sequence.

 � values:KeyValue[]—a collection of KeyValue classes that
are used to express the initial and the terminal values of the key
values for the animation sequence. That expression takes the form
initial_value => terminal_value, specifying the key values
that are interpolated by the animation engine over the speciied
time period.

 � action:function()—is a function which can be attached to the
keyframe. It is invoked when the keyframe's duration has elapsed.

Let's see how the recipe makes use of the keyframe animation constructs. The code uses
three distinct timeline instances to animate the objects for the game. Let's also see how
they are used:

 f The score—the irst animation sequence displays the game's score. This is
accomplished through the scoreAnim Timeline instance. It is used to interpolate
properties scaleX => 3, scaleY => 3, opacity => 0, and visible =>
false of the text node score text node score over a period of one second. When
the animation is executed, the current score is animated showing the text for the
score zooming in while fading simultaneously.

 f The paddle—the paddle (an instance of Rectangle assigned to variable paddle)
runs left and right on the top of the screen. It is animated by an instance of Timeline
assigned to variable paddleAnim. The timeline has a single KeyFrame object that
interpolates the translateX property of the paddle object to move it across the
screen. The call to paddleAnim.play() runs the paddle's animation indeinitely
because repeatCount=INDEFINITE, and the paddle goes back and forth because
autoReverse=true.

 f The ball—when the ball (an instance of Circle assigned to the variable ball) is
clicked on, it travels from the bottom of the screen, moving upwards toward the
paddle's trajectory. The ball is animated using variable binding where the ball.
centerY property is bound to the variable cy. A Timeline instance, assigned
to variable ballAnim, updates cy with two keyframes: at 200 ms variable cy is set
to ive (corresponding to the top of the screen); at 500 ms, cy is assigned an
expression (h - rad) corresponding to the bottom of the screen. As ballAnim
interpolates cy, ball.centerY is updated, thus animating the circle. To start
the animation, ball includes an onMousePressed event handler used to call
ballAnim.playFromStart().

Transformations, Animations, and Effects

98

 f The hit—the Timeline instance assigned to variable ballAnim contains a keyframe
that gets executed over a period of 200 milliseconds (see previous bullets). At the
end of the period, when the ball is at the top of the screen, the keyframe executes
the function attached to its action property. That function:

 � Detects when the ball hits the paddle with the expression
if(ball.intersects(paddle.boundsInParent)

 � Updates the score, increasing it by 1

 � Plays the socreAnim animation sequence to display the score (see
the previous score discussion)

There's more...
Building complex animations with several keyframes can get long and messy. To help with
the syntax burden, JavaFX supports a shortcut notation of the KeyFrame declaration using
the at() syntax. So the previous code snippet becomes:

def scoreAnim = Timeline {

 keyFrames: [

 at (1s) {

 score.scaleX => 3;

 score.scaleY => 3;

 score.opacity => 0.0;

 score.visible => false

 }

]

}

The at() syntax provides a simpler way of expressing keyframes on the timeline. Each at()
is eventually mapped to a KeyFrame declaration and placed on the timeline.

Interpolation
The JavaFX KeyFrame animation API uses interpolation between keyframes to determine how
to ill in the missing animated frames in between the keyframes. Each key value can receive an
Interpolator type speciied after the tween keyword (see code snippet). The interpolator in
JavaFX provides the algorithm that igures out how to ill in the missing frames while maintaining
synchronization with the timeline. There are several types of built-in interpolators with which you
should be familiar:

 f Interpolator.EASEIN—starts the sequence slow and accelerates it smoothly to
a constant progression

 f Interpolator.EASEOUT—decelerates the sequence from a constant progression,
with smooth deceleration, and an eventual stop

 f Interpolator.EASEBOTH—uses both EASEIN and EASEOUT

Chapter 3

99

 f Interpolator.LINEAR—maintains constant progression from the beginning to the
end of the sequence (default)

 f Interpolator.DISCRETE—this interpolator does no in-between animation

You can also create your own custom interpolator to specify how animated objects
behave during animation. See the recipe Creating custom interpolators for animation
in the next section.

Using the Timeline class as a timer
You can use the Timeline class to create general-purpose timers for your code. Declare an
instance of the Timeline class having a single KeyFrame with the following:

 f Set the keyframe's time property as the timer's time period.

 f Deine a callback function for the action property. It will be invoked on each
expiration of the time period.

 f Set the Timeline's repeatCount to INDEFINITE and turn off interpolation
(interpolate=false) for discrete time progression.

The following snippet shows an example of how this would work (see full listing at ch03/
source-code/src/animation/TimelineTimerDemo.fx).

var counter = 0;
var timer = Timeline {
 repeatCount: Timeline.INDEFINITE
 interpolate: false
 keyFrames: [
 KeyFrame {
 time: 1s
 action: function (): Void {
 println(counter++);
 }
 }
]
 }
timer.play();

The timer starts when timer.play() is invoked. The timer will run continuously until either
the pause() or the stop() method is invoked.

See also
 f Introduction

 f Creating simple animation with the Transition API

 f Composing animation with the Transition API

 f Creating custom interpolators for animation

Transformations, Animations, and Effects

100

Creating custom interpolators for animation
The recipe Building animation with the KeyFrame API introduced the notion of keyframe
animation using Interpolator instances to automatically calculate the in-between
values between starting and ending keyframes. As of version 1.2, JavaFX comes with
ive interpolators including Interpolator.EASEIN, Interpolator.EASEOUT,
Interpolator.BOTH, Interpolator.LINEAR, and Interpolator.DISCRETE
(see Building animation with the KeyFrame API for details).

While these interpolators are adequate for most animation sequences, you may, however,
encounter situations where you want your objects to behave differently than the ways offered
by the built-in interpolators. In this recipe, we will show you how to create your own custom
Interpolator class.

Getting ready
This recipe uses keyframe animation concepts supported by the Timeline and KeyFrame
classes to create animation sequences. If you are not familiar with keyframe-based animation
in JavaFX, review recipe Building animation with the KeyFrame API. This recipe will deine a
new interpolator class by extending base class SimpleInterceptor. If you are not familiar
with deining and creating classes in JavaFX, please review Chapter 1, Declaring and using
JavaFX classes.

How to do it...
To illustrate how to create your own custom interpolator, the recipe presents a simple
interpolator class called MagneticInterpolator. As the name suggests, when using this
interpolator, interpolated values briskly snap to the end value when a certain threshold (the
attraction value) has been reached. You can access the full listing of the abbreviated code
shown next in source-code/src/animation/MagneticInterpolatorDemo.fx.

class MagneticInterpolator extends SimpleInterpolator {

 public var attraction:Number = 0.05;

 override public function curve (t : Number) : Number {

 if(t >= 1 - attraction){

 1;

 }else if(t < attraction){

 0;

 }else{

 t;

 }

 }

}

Chapter 3

101

def circ = Circle { centerX: 25 centerY: 100 radius: 25 };

var t = Timeline {

 autoReverse:true

 repeatCount:Timeline.INDEFINITE

 keyFrames: [

 at(2s) {

 circ.centerX => 375

 tween MagneticInterpolator{attraction:0.07}

 }

]

};

The next igure depicts how the circle's centerX property is interpolated using the
MagneticInterpolator class.

How it works...
Given a start and an end value, interpolation provides the ability to algorithmically deduce an
in-between target value given ratio t where 0.0 <= t <= 1.0. For instance when t = 1.0,
most interpolators will return the end value. In JavaFX, to implement your own interpolator, you
can either start from scratch and extend the Interpolator abstract class, where you will be
responsible for providing your own interpolation algorithm. Or, you can extend the ready-made
SimpleInterpolator class, which implements a simple linear algorithm.

For the implementation of the MagneticInterpolator class, we use the latter approach and
extend SimpleInterpolator, because we expect values to be calculated in a linear fashion.
The MageneticInterpolator class exposes a property called attraction:Number which,
to keep things simple, is the t value beyond or below which (depending on direction) will snap
to the inal target value. As shown in the previous igure, when the Interpolator goes past time
value t

a
 the location of the circle along the x-axis snaps to 375.

Transformations, Animations, and Effects

102

Usage of the SimpleInterpolator class requires the implementation of function
curve(t:Number):Number, which is expected to emit the target value for a given t.
The code snippet for this recipe implements the curve function where:

 f If the t greater than 1 – attraction, the function snaps to the end value
 f If t is decreasing and goes below attraction, it snaps to the start value
 f Otherwise, t progresses linearly

In our example, we use our magnetic interpolator in the KeyFrame instance to animate
the displacement of the Circle instance along the x-axis over a period of two seconds.
As the animation engine interpolates the location of the circle (circ.centerX) using the
MagneticInterpolator instance, it will snap the end position of 375 when the time ratio
t slides beyond the attraction property. When the animation is running in reverse, the
interpolator snaps to 0 when t is less than attraction.

See also
 f Introduction
 f Building animation with the KeyFrame API
 f Morphing shapes with the DelegateShape class

Morphing shapes with the DelegateShape
class

You have seen these cool effects in movies and TV shows where an object smoothly transition
from its current shape to another shape. The transition is known as morphing and you can
easily achieve the same effect in JavaFX. In this recipe, we will explore how to use animation
sequences and the DelegateShape class to morph shapes.

Getting ready
This recipe uses animation concepts presented in previous recipes. If you are not familiar with
how to create animation sequences, review the recipe Building animation with the KeyFrame
API. This recipe also uses the DelegateShape class, which is found in package javafx.
scene.shape. This class, as you will see, can be used to create animation sequences of
objects morphing from one shape to the other.

How to do it...
The following code snippet shows how to create a morphing animated sequence between
three shapes. You can get the full code listing from ch03/source-code/src/animation/
ShapeMorphDemo.fx:

Chapter 3

103

def rect = Rectangle { x: 200 y: 100 width: 100 height: 50 };

def circ = Circle { centerX: 200 centerY: 100 radius: 50 };

def poly = Polygon { points: [200, 50, 300, 150, 150, 150] };

def morph = DelegateShape {

 shape:poly

 fill: LinearGradient {

 startX: 0, endX: 0, startY: 0, endY: 1

 stops: [

 Stop { offset: 0, color: Color.BLUE }

 Stop { offset: 1, color: Color.WHITE }

]

 }

 stroke:Color.NAVY

 strokeWidth:4

}

var t = Timeline {

 autoReverse:true

 repeatCount:Timeline.INDEFINITE

 keyFrames: [

 KeyFrame { time: 2s values: morph.shape => rect tween
 Interpolator.EASEBOTH]},

 KeyFrame { time: 4s values: morph.shape => circ},

 KeyFrame { time: 6s values: morph.shape => poly},

]

};

t.play();

When the animation is played, you will see the different shapes smoothly transition from the
rectangle, circle, and the polygon, as shown in the following screenshot.

Transformations, Animations, and Effects

104

How it works...
This recipe shows you how to animate a shape to morph it to another shape smoothly using
the DelegateShape class. This class is a descendent of Shape. It does not represent an
actual shape itself, however, it uses its internal Interpolator instance to calculate the
necessary in-between shapes between a start and an end shape.

In our code snippet, we declare three starting shapes: a Rectangle, a Circle, and a
Polygon. Although these Shape instances are Interpolatable, it is impossible to
interpolate between them, as they are of different types (Interpolators can only interpolate
values of the same types). The DelegateShape class, however, can be assigned an object
of type Shape through its shape:Shape property. That object instance can then be
interpolated to another instance of Shape over time.

In the code snippet, the ShapeDelegate.shape property is initially assigned an instance
of the Polygon shape. Using a Timeline, the ShapeDelegate.shape is interpolated to
a Rectangle over a period of two seconds. At four seconds, ShapeDelegate.shape is
interpolated from Rectangle to Circle. Lastly, ShapeDelegate.shape is interpolated
from Circle to Polygon two seconds later. The entire animation produces a smooth
animation of the shapes morphing from one igure to another.

See also
 f Introduction
 f Creating simple animation with the Transition API
 f Composing animation with the Transition API
 f Building animation with the KeyFrame API

Using data binding to drive animation
sequences

As you create more elaborate animation, you will run into situations where you want to
synchronize object movements in your animation sequences. You can do that by declaring
several instances of Timeline, or you can automate the synchronization of your objects
using bound variables. This recipe shows you how to use data binding to update object
properties automatically during an animation sequence.

Getting ready
This recipe uses the Timeline and KeyFrame classes to create animation sequences. If you
are not familiar with keyframe-based animation, review the recipe Building animation with
the KeyFrame API. This recipe also includes the notion of data binding covered under Using
binding and triggers to update variables in Chapter 1, Getting Started with JavaFX.

Chapter 3

105

How to do it...
The next code snippet illustrates how to use data binding in keyframe-based animation. We
will animate several objects synchronously using only one timeline. You can see the full code
in ch03/source-code/src/animation/BoundAnimationDemo.fx.

def w = 400;

def h = 200;

def width = 50;

def rad = width/2;

def spacer = 30;

var locY = h - width;

def circ1 = Circle {

 centerX: rad + spacer centerY: bind (locY + rad)

 radius: rad

}

def rec1 = Rectangle {

 x: circ1.boundsInLocal.maxX + spacer y: bind locY

 width:width height:width

}

def circ2 = Circle {

 centerX: rec1.boundsInLocal.maxX + spacer + rad

 centerY: bind (locY + rad) radius: rad

}

def rec2 = Rectangle {

 x: circ2.boundsInLocal.maxX + spacer y: bind locY

 width:width height:width

}

Timeline {

 repeatCount:Timeline.INDEFINITE

 autoReverse:true

 keyFrames:[

 at(1s){locY => width tween Interpolator.EASEBOTH}

]

}.play();

Transformations, Animations, and Effects

106

Once the objects are placed in a Stage instance and the application is executed, you should
see all four objects move up and down together on the screen, as shown in the next igure.

How it works...
The JavaFX data binding system provides an event-driven infrastructure which you can easily
use to automate object property updates. When you bind the property of a node to a single
value or an expression, the JavaFX binding system automatically registers your bound objects
to receive updates as the value (or expression) is updated. In the context of an animated
sequence, the bound object receives updates as the value (or expression), it is bound to
is interpolated by the animation engine. You can leverage this mechanism to implement
synchronized animation by binding several objects to interpolated values or expressions.

In our code snippet, we accomplish synchronized object animation with one Timeline
instance as follows:

 f Declare variables—in the irst portion of the code, we declare all of the variables
needed, including locY, which will be used to provide the trajectory for the
animated objects.

 f Animated objects—next, we declare four simple shapes, including two circles and two
rectangles, that will be animated. Each shape has its y-coordinate bound to variable
locY (or an expression that uses locY). As the value of locY changes, it will update
the position of the object along the y-axis.

 f Timeline animation—all four declared objects are animated using one Timeline
instance with a single KeyFrame instance. The keyframe interpolates variable locY
from the initial value of (h – width) to width over a one-second time period.
As locY is updated by the interpolator, all four objects bound to variable locY are
animated along the y-axis.

See also
 f Chapter 1 —Using binding and triggers to update variables

 f Chapter 3—Building animation with the KeyFrame API

Chapter 3

107

Applying cool paint effects with gradients
In previous recipes, we have seen the Color class used to apply color to node instances
through the fill property. You may have noticed in some recipes however, that instead of a
simple color instance, you can apply color effects to the fill property. In this recipe, we are
going to explore the gradient color effect.

Getting ready
This recipe uses the concept of gradient paint effects to demonstrate JavaFX's deep support
for rich GUI functionalities. To use gradient paint effects presented in this recipe, you will
need to import classes LinearGradient, RadialGradient, and Stop from the package
javafx.scene.paint.

How to do it...
The abbreviated code listing below shows how to use the gradient classes. You can access the
full code listing from ch03/source-code/src/effects/GradientPaintDemo.fx.

def w = 400;

def h = 200;

def linearGrad = LinearGradient {

 startX: 0.0, startY: 0.0, endX: 0.0, endY: 1.0

 proportional: true

 stops: [

 Stop {offset: 0.0 color: Color.RED},

 Stop {offset: 1.0 color: Color.BLACK},

]

}

def radialGrad = RadialGradient{

 radius:1; centerX: 0.5, centerY: 0.5

 proportional: true

 stops: [

 Stop {offset: 0.0 color: Color.BLACK},

 Stop {offset: 1.0 color: Color.WHITE},

]

}

def circ0 = Circle {

 centerX: w/2 centerY:h/2 radius: 90 fill:radialGrad

}

Transformations, Animations, and Effects

108

def rec0 = Rectangle {

 width: 100 height: 90

 x: 30 y: h - 90

 fill: linearGrad

 stroke:Color.SILVER

}

The code generates the objects shown in the next igure with a radial gradient applied to the
circle and the linear gradient applied to the rectangle.

How it works...
The JavaFX GUI framework comes with two built-in gradient paint methods, the
LinearGradient and the RadialGradient. The gradient is an extension of the
paint class, meaning that it can be used anywhere that the paint class can be applied.

The gradient class ills the shape of their target nodes with two or more colors using a graded
pattern between the colors. The gradient classes expose the stops:Stop[] property, which
is a collection Stop instances. The Stop class is similar to the KeyFrame class, in that, it
represents a key color participating in the gradient. The gradient class interpolates the graded
colors between the speciied stop colors. The offset property of the Stop class indicates the
order in which the color is rendered in the gradient.

In the previous code snippet, each gradient instance uses two Stop instances to specify
the colors participating in the gradient patterns. The LinearGradient creates a gradient
between colors Color.RED and Color.BLACK; and the RadialGradient instance creates
a gradient with the Color.WHITE and Color.BLACK colors. You can, however, have many
more stops included in your gradient.

There's more...
JavaFX's gradient implementation uses the concept of proportionality to express the values of
gradient properties. When proportionality is turned on through the proportional:Boolean
property, the spatial and dimensional properties can be expressed as a ratio rather than an
absolute value. For instance, the next code snippet uses proportional values to express the
radius and the center location of the radial gradient as a fraction:

Chapter 3

109

def radialGrad = RadialGradient{

 radius:1; centerX: 0.5, centerY: 0.5

 proportional: true

 stops: [...]

}

Here, radius = 1 means to stretch out the size of the radial gradient to 100% of the size
of the target node. In our snippet, the centerX and centerY properties are expressed as
fractional values of 0.5, which will cause the gradient to be generated at half the size of
the circle.

See also
 f Introduction

Creating your own customized Paint
In previous recipes (and chapters), we have seen the use of the Color class used to apply
paint color to an object. In the recipe Applying cool paint effects with gradients, we explored
how to use JavaFX's built-in gradient classes to apply paint effects to visual objects. But, what
if you want to create your own customized paint? This is exactly what is covered in this recipe.
You will learn how to create your own Paint instance, which can be used to ill in your objects.

Getting ready
This recipe makes use of the javafx.scene.paint.Paint class to create a customized
Paint instance that can be used to paint any node object. We are also going to make use
of additional classes, javax.imageio.ImageIO, java.net.URL, java.awt.geom.
Rectangle2D, and java.awt.TexturePaint, that are used to load the image and
create the paint texture.

How to do it…
Creating a customized paint involves extending class Paint. To illustrate how to accomplish
this, the next code snippet creates the class CustomPaint to be used as textured
paint. You can get the full listing of the code in ch03/source-code/src/effects/
CustomPaintDemo.fx.

class CustomPaint extends Paint {

 public-init var url:String;

 override public function impl_getPlatformPaint () : Object

 {

 var buff = ImageIO.read(new URL(url));

Transformations, Animations, and Effects

110

 new TexturePaint(

 buff,

 new Rectangle2D.Double(0,0,64,52)

);

 }

}

def w = 400;

def h = 200;

def circle = Circle {

 centerX:w/2 centerY:h/2

 radius:75

 fill:CustomPaint{url:"{__DIR__}texture.png"}

 stroke:Color.BLACK

 strokeWidth:3

};

When the code is executed, it renders a circle that is painted with the textured paint returned
by the CustomPaint class as shown in the following screenshot:.

How it works...
The previous code snippet shows how to extend the Paint class to create a customized
Paint class that can be used to ill shapes. In this recipe, we will create class CustomPaint
to be used as textured paint. The class takes an arbitrary image ile and use its content as the
textured paint applied to the shape object. Let's examine how that is done in the code:

 f CustomPaint class—is used to create our customized paint, we extend the abstract
class Paint. Our class exposes the url:String property, which is a value that
contains the URL location of the image to be used as the textured background for
the paint.

 f Function impl_getPlatformPaint—this is a required function that must be
implemented when extending the Paint class. It is expected to return an Object
instance that can be used as Paint instance.

Chapter 3

111

 f Loading the image ile—inside the impl_getPlatformPaint function, the irst
thing that is done is to load the image ile. We use ImageIO.read() function
to read the image's content and return an instance of java.awt.image.
BufferedImage stored in variable buff.

 f Creating texture—once the image is loaded, it is ready to be handed off to create
the Paint instance. This is done with an instance of the TexturePaint class. The
constructor of that class takes two arguments, including a BufferedImage, stored
in variable buff, and an instance of Rectangle2D, which provides the dimensions
of the image being loaded.

 f Using the paint—the paint can be used wherever a Paint instance can be applied.
Here, we used the customized paint to ill an instance of the Circle shape:
Circle{...

 fill:CustomPaint{url:"{__DIR__}texture.png"} ...

}

When the texture paint is applied to a shape, it repeats the content of the image ile across
the surface of the shape, where it is applied automatically.

The {__DIR__} built-in variable returns to the location where the
class being executed is found (in this case source-code/src/
effects/). This is covered in more detail in Chapter 5, JavaFX Media.

See also
 f Applying cool paint effects with gradients

Adding depth with lighting and shadow
effects

All of the shapes we have used so far have been rendered pretty bland with boring solid
colors. Let's say you want to enhance the look of your objects by adding depth for a more
engaging look. This recipe shows you how to use the Effect classes to add lighting and
shadow effects to visual nodes in the scene graph.

Getting ready
All Node instances can receive an effect through the effect:Effect property. You can
ind all effects in the package javafx.scene.effect. For this recipe, we are going to
use effects classes Lighting, DistantLighting, and DropShadow.

Transformations, Animations, and Effects

112

How to do it...
The abbreviated code listing given next shows you how to use the Lighting and the
DropShadow effects to enhance the appearance of a circle and a rectangle. You can
ind the the full listing in ch03/source-code/src/effects/ShapeEffectDemo.fx.

def shadow = DropShadow { offsetX:5 offsetY:5 }

def light = Lighting {

 light:DistantLight{azimuth:-45}

 surfaceScale:5

}

def circ = Circle {

 centerX: 125 centerY: 100 radius:50

 fill:Color.RED stroke:Color.BLUE

 effect: light

}

def rect = Rectangle {

 x:200 y:50 width:125 height:100

 fill:Color.BLUE

 arcHeight:10 arcWidth:10

 effect:shadow

}

The code snippet produces the objects shown in the next igure.

How it works...
As mentioned earlier, all Node instances expose the effect:Effect property. An Effect
class provides algorithmic manipulation to the input source to produce new graphical
elements with the applied effects during rendition of the scene graph. In this recipe, we use
the Lighting and the DropShadow effects to add depth to the the objects on the scene.
Let's see how these effects work.

Chapter 3

113

The Lighting­effect simulates a light source shining across the object, creating a slight
shadow and relection area on the surface of the object. This essentially generates an
elevated 3D-like effect around the object (perfect for creating buttons). The Lighting
effect exposes a number of properties including the light:Light property. The Light
class provides further control over the direction and elevation of the light source being
used to generate the effect.

In this recipe, the Lighting effect causes the circle to be re-rendered with a slight elevation
and a surface shadow that falls around the edge of the new shape. The circle received an
instance of DistantLight, through the light property, which represents a distant light
source. The DistantLight instance provides control over the angle of the light source
through the azimuth property (you can also control elevation). The surfaceScale property
speciies the height of the surface elevation used to simulate the lighting effect.

The DropShadow­effect re-renders the node with a shadow behind it. It automatically
igures out the shape of the shadow and provides a default blur size. This gives the object
the appearance of loating on the screen. The DropShadow effect offers several properties
to control how the shadow is generated including the blur level of the shadow's edge, the
shadow's color, the shadow's x/y offset, and the radius of the blur. For our example, we simply
specify the x and y distance offset of the shadow, as shown in the previous screenshot.

The algorithm which creates effects can be CPU intensive. If you have a scene
graph containing hundreds of nodes with complicated effects, you will pay a
penalty through performance degradation. Therefore, you should understand
the implications of using a speciic effect before applying it on a large scale.

There's more...
Though our recipe only covers two effects, JavaFX provides an extensive set of built-in effect
classes located at javafx.scene.effect. The next table shows a list of all available
effects as of version 1.2.

Blend Blends two effects to create a third effect from the
combination

Bloom Makes bright portion of an input glow
BoxBlur, GaussianBlur,
and MotionBlur

Available blur effects

ColorAdjust Allows adjustment of hue, saturation, brightness, and
contrast

DisplacementMap A low-level effect that shifts each pixel by a speciied value
Flood Fills a rectangular region with a given paint

Transformations, Animations, and Effects

114

Glow Makes the target appear to glow
Shadow, InnerShadow Other classes that apply shadow effects
InvertMask Renders a graphical inverse of the input
PerspectiveTransform Modiies the perspective of an object to simulate 3D
SepiaTone Renders a discoloration effect, producing an antique look

See also
 f Creating your own customized Paint

 f Applying cool paint effects with gradients

Creating your own Text effect
In the recipe Adding depth with lighting and shadow effects, we introduced several effect
classes that are available in JavaFX. The Text node can receive any one of these effects to
produce stunning text effects. You can, however, go beyond the available effects to produce
your own text effects by combining available Node operations and effects. In this recipe,
we are going to combine what we have learned in the second chapter's constructive area
geometry operations, and the effects covered in this chapter, to create a text cut-out effect.

Getting ready
As mentioned in the introduction, this recipe combines concepts from constructive area
geometry covered in the recipe Creating shapes with constructive area geometry from
Chapter 2, Creating JavaFX Applications, and the Effect classes covered earlier in this
chapter to create new text effects. Hence, if you are not familiar with any of these topics,
it will be helpful to review them before continuing.

How to do it...
The next code snippet creates a text cut-out effect using ShapeSubtract to apply
constructive area geometry operation and the DropShadow class to provide depth. The full
code listing can be found in ch03/source-code/src/effects/TextEffectDemo.fx.

def w = 400; def h = 200;

def rw = w - 100; def rh = h - 50;

def bg = Rectangle {

 x: w/2-rw/2 y: h/2-rh/2 width: rw height: rh

 fill: LinearGradient {

 startX: 0, endX: 0, startY: 0, endY: 1

Chapter 3

115

 }

}

def text: Text = Text {

 layoutX: bind (w - text.layoutBounds.width) / 2.0

 layoutY: bind (h - text.layoutBounds.height) / 2.0

 content: "Hello!"

 font: Font.font("Arial", FontWeight.BOLD, 100);

 fill: Color.SILVER

 textOrigin: TextOrigin.TOP

}

def txtfx = ShapeSubtract {

 a: bg

 b: text

 effect: DropShadow {

 color: Color.rgb(0, 0, 0, 0.9)

 offsetX: 5, offsetY: 5

 radius: 10

 }

 fill: LinearGradient {

 startX: 0, endX: 0, startY: 0, endY: 1

 stops: [

 Stop { offset: 0, color: Color.SILVER }

 Stop { offset: 1, color: Color.WHITE }

]

 }

}

When the code is rendered, it produces the text effect shown in the following screenshot.

How it works...
The code illustrates how you can combine the built-in visual effects available in JavaFX to
create new customized effects. In this recipe, we use the ShapeSubtract, DropShadow,
and LinearGradient to build the cut-out text effect seen in the previous screenshot. Let's
examine how this works.

Transformations, Animations, and Effects

116

 f Create the stencil—irst, we deine a Rectangle instance (assigned to variable bg)
from which the letters will be cut out. Next, we create the text shapes using a Text
instance (assigned to variable text) that will be extruded from the rectangle shape.

 f Cut text out—to extract the text shapes from the rectangle, we use the
ShapeSubtract class to apply a shape subtraction operation, extracting the node
assigned to property a (the text node) from property b (the rectangle).

 f Apply effects—subtracting the shapes from one another does not create the desired
effect. To make the effect more realistic, we apply a DropShadow effect to the
subtracted shape (rectangle with cutout letters). This adds depth to the text, making
the letters stand out as if they were cut out of the rectangle. To polish the effect, we
apply a linear gradient to the surface of the rectangle giving it a dusty metallic look.

See also
 f Adding depth with lighting and shadow effects

 f Applying cool paint effects with gradients

Adding visual appeal with the Relection
effect

One of the appealing features of the Mac OS X operating system is its treatment of graphical
relection of objects on the desktop. As a modern development environment, JavaFX
provides the tools and APIs to take advantage of popular effects, such as relection. Before
we conclude this chapter, we are going to explore how to use the Relection class to create
compelling graphical effects.

Getting ready
The Reflection effect can be found in the package javafx.scene.effect and is part
of the Effect API covered in the recipe Adding depth with lighting and shadow effects. If you
are not familiar with how effects work in JavaFX, review that recipe.

How to do it...
To keep things simple, the next code snippet shows you how to apply relection effects to
objects on the scene. You can see the full code listing from ch03/source-code/src/
effects/ReflectionEffect.fx.

var grad = LinearGradient {

 startX: 0.0, startY: 0.0, endX: 0.0, endY: 1.0

 proportional: true

Chapter 3

117

 stops: [Stop { offset: 0.0 color: Color.DARKBLUE },

 Stop { offset: 1.0 color: Color.LIGHTBLUE }]

}

var reflect = Reflection {

 fraction: 0.50

 topOpacity: 0.50

 bottomOpacity: 0.0

 topOffset: 2.0

};

var rect = Rectangle {

 x:130 y:50 width:100, height:80

 stroke:Color.RED strokeWidth:2

 arcHeight:10 arcWidth:10

 fill:grad

 effect:reflect

}

var circ = Circle {

 centerX:290 centerY:75 radius:50

 stroke:Color.BLUE strokeWidth:2

 fill:grad

 effect:reflect

}

When the code is executed it places a rectangle and a circle with a relection on the stage,
as shown in the next igure.

How it works...
Relection, in JavaFX, is applied as an effect to a visual node in the scene graph. By default,
the Reflection class uses the original node, to which it is attached, as its input and renders
a new image with a relection at the bottom. The top portion of the rendered image is the
node, and the bottom is the generated relection. The generated relection is automatically
blended with its surrounding's color, providing a clean rendition of the relection effect.

Transformations, Animations, and Effects

118

For our example, we apply the relection effect to a rectangle and a circle object. Both objects
use a gradient paint against a black-illed scene. The Reflection class automatically blends
the background color and the gradient from the original object to product a nice relective effect.

The Reflection class makes several properties available that provide control over the
way the relections work. Here are some common properties that you may come across:

 f fraction—a ratio between 0 to 1, which indicates how much of the original visual
node is relected. A value of 1, for instance, means that all of the original object is
relected. A value of 0 shows no relection. For best results, apply this property with
a value between 0.25 to 0.75.

 f topOpacity—a ratio indicating how opaque the relection is at the top of the
relected image. This number ranges from 0 to 1, where 0 is complete opacity
and 1 is complete transparency.

 f bottomOpacity—a ratio indicating how opaque the relection is at its bottom where
it starts to fade. This number has a range from 0 to 1, where 0 is complete opacity
and 1 is full transparency.

 f topOffset—this is the distance between the bottom of the original node and the top
of the relected image in pixels.

When you use the Relection effect, the newly generated relected image is attached to the
original node. The relection is updated accordingly with any spatial or visual changes that
are applied to the properties of the original node.

The relected portion of the image does not respond to
any mouse input gesture.

See also
 f Adding depth with lighting and shadow effects

4
Components and

Skinning

In this chapter, we will cover the following topics:

 f Creating a form with JavaFX controls

 f Displaying data with the ListView control

 f Using the Slider control to input numeric values

 f Showing progress with the progress controls

 f Creating a custom JavaFX control

 f Embedding Swing components in JavaFX

 f Styling your applications with CSS

 f Using CSS iles to apply styles

 f Using CSS iles to declare your styles

 f Skinning applications with multiple CSS iles

Introduction
As a rich GUI application framework, JavaFX offers everything you will need to build
applications that provide an engaging user experience. This chapter is about the GUI
components that are available in the JavaFX application framework that you can use
as building blocks to create applications quickly.

Components and Skinning

120

As of this writing, JavaFX's current version of 1.2 makes available more than a dozen JavaFX
components (with the promise of more to come in future releases) located in the package
javafx.scene.control. These are native JavaFX components designed from scratch to
provide the level of rich properties and behaviors expected from a rich client platform. They
include button, check-box, toggle buttons such as the radio button, hyperlink button, text box,
label, and so on. See the recipe Creating a form with JavaFX controls for details.

This chapter also explores ways to integrate JavaFX and the venerable Java Swing GUI
framework. Over the years, Swing has evolved into a stable and reliable GUI platform with
a well-understood component model. Developers have been writing Swing components for
well over a decade, producing a wealth of GUI components and knowledge. That fact did not
escape the JavaFX engineers, so they have provided a bridge API, found in javafx.ext.
swing, to let developers expose standard Swing controls inside JavaFX applications. If your
needs go beyond the standard controls, you will learn how to wrap your custom Swing controls
as JavaFX controls.

Finally, this chapter explores ways to customize the look and feel of your components using
the JavaFX's implementation of Cascading Style Sheets (CSS) for skinning components. All
visual nodes in a JavaFX scene can be injected with CSS styles similarly to web pages. You will
learn how to style your JavaFX applications using inline or externalized CSS iles.

I know you can't wait, so let's get started!

Creating a form with JavaFX controls
The previous chapters demonstrated the power of the JavaFX platform in creating engaging UI
experiences with features such as animation, effects, and so on. Data capture is an equally
important aspect for a great user experience. In this recipe, you will learn how to assemble
standard JavaFX GUI controls to build a form to collect data.

Getting ready
This recipe attempts to use as many standard JavaFX controls as possible to create a form
to collect data from the user. All of the controls used here are found in the package javafx.
scene.control.

What is a Control anyway, you may ask? Controls provide a uniform graphical and interaction
model with consistent and predictable behaviors. For instance, a button, a text input ield,
and a label, are all examples of standard controls available in JavaFX. All controls implement
the Control class as the basis for all user interface controls that are part of the JavaFX
application framework.

Chapter 4

121

How to do it...
To illustrate how to use the standard JavaFX controls, we are going to create a data input form.
Because the full listing of the code is rather long, the abbreviated version presented here
shows the pertinent portion of the code. You can see the full version in ch04/source-code/
src/controls/DataFormDemo.fx.

def rdoBtns = ToggleGroup{};

var nameRow = HBox {spacing:7

 content:[

 VBox{content:[Label{text:"First Name"},

 TextBox{id:"fName"}]}

 VBox{content:[Label{text:"Last Name"},

 TextBox{id:"lName"}]}

]

}

var addr1Row = HBox {

 spacing:7

 content:[

 VBox{content:[Label{text:"Address"},

 TextBox{id:"addr"}]}

 VBox{content:[Label{text:"Suite"},

 TextBox{id:"suite"}]}

]

}

var addr2Row = HBox {

 spacing:7

 content:[

 VBox{content:[Label{text:"City"},

 TextBox{id:"city"}]}

 VBox{content:[Label{text:"Postal Code"},

 TextBox{id:"pcode"}]}

]

}

var titleRow = HBox {spacing:7

 content:[

 HBox{

 nodeVPos:VPos.CENTER spacing:7

 content:[

 Label{text:"Title:"}

 RadioButton{

Components and Skinning

122

 text:"Programmer"

 toggleGroup:rdoBtns id:"pgmr"}

 RadioButton{

 text:"Manager"

 toggleGroup:rdoBtns id:"mngr"}

 RadioButton{

 text:"Janitor"

 toggleGroup:rdoBtns id:"gntr"}

]

 }

]

}

var attndRow = HBox {spacing:7

 nodeVPos:VPos.CENTER

 content:[CheckBox{id:"isattnd" text:"Mark as Attendee"}]

}

var btnRow = HBox {

 spacing:7

 content:[

 Button{

 text:"Submit"

 action:function(){

 // display data

 }

 }

 Button{text:"Clear"}

]

}

// form panel to display it all

def panel = VBox { spacing:5

 content: [

 nameRow,

 addr1Row, addr2Row,

 titleRow, attndRow,

 btnRow

]

}

Chapter 4

123

When the panel variable is added to a scene and the application is executed, it will create a
form as shown in the next screenshot:

How it works...
The form created in this recipe uses several of the standard GUI controls found in JavaFX.
Thought the code looks intimidating, each row in the form is organized as merely a series of
repeating VBox and HBox layout managers assigned to a corresponding variable. Each row is
then assembled in a VBox instance assigned to the variable panel. Let's take a closer look at
the controls.

 f Label—as you can guess, the Label control is normally used to afix a label for
another control. Though basic in its functionalities, the Label class exposes a
myriad of properties to control the font attributes, position, icon image, text
behavior in constrained spaces, and text wrapping behaviors. In our example,
we simply use the labels to label text boxes and other GUI controls the form.

 f TextBox—this is the control designated to collect and display textual data using
free-form text. The JavaFX TextBox class makes several useful properties available,
including a watermark prompt (displayed prior to text entry), font attributes, the size
of the text box, and the text that was entered.

 f RadioButton—this control is designed to function as a toggle button when the
user needs to select one item from two or more choices. Similar to other controls,
the RadioButton exposes several properties to control the button's label, font,
icon, and selection state. To get RadioButton instances to toggle as a group, you
must specify a ToggleGroup instance through the toggleGroup:ToggleGroup
property. In the recipe, we deine variable rdoBtns as the ToggleGroup instance
for all three instances of the radio button.

Components and Skinning

124

 f CheckBox—similar to RadioButton, the CheckBox control is labeled entity, used to
let the user make multiple selections. It exposes properties to control the CheckBox's
label, font, icon, and, most importantly, the selection state.

 f Button—the last controls used in the form is the Button. This class represents
regular push button controls, used to execute an action when clicked. As a labeled
entity, you can control the label's text, the font, and the icon for the button. The
Button instances also expose the action:function() property to let developers
specify what happens when the button is clicked.

There's more...
Once you have created a form using JavaFX, then what? How do you retrieve the data that is
stored in the control? Fortunately, JavaFX offers an easy way to search for a control (or any
node) you place in the scene graph. Recall that each control that receives input data has
the id:String property. This property provides a reference for the control, where it can be
searched in the scene graph tree.

The following code segment shows how to retrieve the text data stored in the TextBox instance
identiied as city:

var scene:Scene;

var city = (scene.lookup("city") as TextBox).text

Stage{

 scene: scene = Scene {...}

}

The code uses the Scene.lookup(id:String):Node script-level function to search for
a given node in the scene graph. You can see the full example of how this is used in the
source code from ch04/source-code/src/DataFormDemo.fx. When the Submit
button is clicked, the function goes through and collects data from all of the input controls
and displays it in a panel, as shown in the next screenshot:

Chapter 4

125

See also
 f Chapter 2—Arranging your nodes on stage

 f Introduction

Displaying data with the ListView control
In rich GUI frameworks, displaying data in a structured list is one of the fundamental GUI
controls made available to users. In this recipe, we will discuss how to use the ListView
component to collect and display data.

Getting ready
The ListView control is part of the GUI control collection offered by JavaFX in the
javafx.scene.control package. If you have not used the JavaFX controls, it may be
helpful to review the recipe Creating a form with JavaFX controls for some background
information. Some of the code uses JavaFX constructs, such as for-loop expressions.
If you need a refresher, review Chapter 1, Getting Started with JavaFX, which covers
language fundamentals.

How to do it...
The ListView component has a simple mechanism. You provide it with a sequence of
objects, and it will attempt to display those items in a list. In the next code snippet, we attach
a sequence of String objects to the list to display. You can access the full code listing for this
example from ch04/source-code/src/ListViewDemoSimple.fx.

var w = 400;

var h = 200;

var listView = ListView {

 width:w-200

 height:h-50

 effect:DropShadow{offsetY:3 offsetX:3}

 items: for (i in [1..50]) "Cloud {%5s i}"

}

listView.layoutX = (w - listView.width)/2;

listView.layoutY = (h - listView.height)/2;

Stage {

 width: w

 height: h

Components and Skinning

126

 scene: Scene {

 fill:LinearGradient {

 startX: 0, endX: 0, startY: 0, endY: 1

 stops: [

 Stop { offset: 0, color: Color.GRAY }

 Stop { offset: 1, color: Color.WHITESMOKE }

]

 }

 content: [listView]

 }

}

When executed, the code produces the following list:

How it works...
The ListView control allows you to arrange and display data in a vertical list. This
control makes available several properties, including selectedIndex and selectedItem,
to access the currently selected item in the list. The ListView class also exposes the
items:Object[] property as the list's data model displayed in the List instance. In
our example, we dynamically generate the data model as a sequence of 50 strings using
a for-loop expression and assign that sequence directly to the list's items property.

As of version 1.2, the ListView component only displays textual items in
the list. The component does not allow you to use, say, a Node class as its
model. Therefore, you cannot create custom lists that display non-textual
items. This will certainly be improved in future versions.

Chapter 4

127

There's more...

Using a custom data model with ListView
While the previous code shows you how to use String sequences as the data model for a
ListView, you are not limited to that. Here, we are going to modify the previous example to use
a custom data model as the list item. The full listing of the code presented here can be found
at ch04/source-code/src/controls/ListViewDemoExtended.fx.

To use a custom data model with the ListView, we use the following steps:

1. Deine the model class. Below, we create class MyItem as the one to be used in the
ListView instance. Make sure to override the function toString() to return a string
representation of the data item to be displayed in the list. The MyItem class stores a
shape along with a descriptive name.
class MyItem {

 public var id:Integer = new Random().nextInt(100);

 public var name:String;

 public var shape:Shape;

 override function toString():String {

 "Shape: {%5s name}"

 }

}

2. Add instances of the model to the ListView.items property. Here, we add four
instances of the MyItem class to the ListView. Each MyItem instance has an id,
name, and a shape stored in it.
var listView = ListView {

 width:200

 height:150

 items: [

 MyItem{id:1 name: "Rectangle"

 shape:Rectangle{width:100 height:50}}

 MyItem{id:2 name:"Circle" shape:Circle{radius:25}}

 MyItem{id:3 name:"Line"

 shape:Line{startX:10 startY:10 endX:40 endY:50}}

 MyItem{id:4 name:"Round Rectangle"

 shape:Rectangle{

 width:100 height:50

 arcHeight:10 arcWidth:10}

 }

]

}

Components and Skinning

128

3. Use an onMouseClicked event handler to retrieve the item from the view. You can
get the currently selected item using the ListView.selectedItem property when
the mouse is clicked on the control.
listView.onMouseClicked = function(e) {

 var item = listView.selectedItem as MyItem;

 panel.content = [

 item.shape,

 Label{text:"You selected item {item.name}"}

]

}

When the code is executed, it renders the list as shown in the next screenshot.

See also
 f Introduction

 f Creating a form with JavaFX controls

Using the Slider control to input numeric
values

We have seen how to capture data input using traditional GUI controls such as TextBoxes and
Buttons. The Slider control offers a different means of inputting data by sliding a knob along a
groove. In this recipe, we use the Slider control to create a color picker application.

Chapter 4

129

Getting ready
The Slider control is part of the standard GUI controls offered by JavaFX in the javafx.
scene.control package. By sliding the slider along its track, users are both inputting data
by selecting the slider's position on the track, and they are getting visual feedback conirming
their input. If you have not used the JavaFX controls, it may be helpful to review the recipe
Creating a form with JavaFX controls for some background information.

How to do it...
The following code snippet shows you how to use the Slider control as an input controller to
update the color values of another object on the stage. You can get the full code listing from
ch04/source-code/src/controls/SliderDemo.fx.

var rSlide = Slider {
 translateX:10 translateY:20 min:0 max:255 value:0
}
var gSlide = Slider {
 translateX:10 translateY:40 min:0 max:255 value:0
}
var bSlide = Slider {
 translateX:10 translateY:60 min:0 max:255 value:0
}

var circ = Circle {
 fill : bind Color.rgb(
 rSlide.value, gSlide.value, bSlide.value
)
 stroke:Color.WHITE strokeWidth:3 radius: 70
 effect:DropShadow{offsetY:3 offsetX:3}
}

var panel = HBox{
 width:w
 spacing:20
 nodeVPos:VPos.TOP
 content:[
 VBox {content: [rSlide, gSlide, bSlide]},
 circ,
 VBox{
 spacing:20
 content:[
 Text{content: bind "R: {%.0f rSlide.value}"}
 Text{content: bind "G: {%.0f gSlide.value}"}
 Text{content: bind "B: {%.0f bSlide.value}"}
]
 }
]
}

Components and Skinning

130

When the variable panel is added to a Scene instance (not shown) and the application is
executed, you will end up with what is shown in the next screenshot:

How it works...
The previous code shows how to use the Slider control to create a color picker. It declares
three Slider instances to represent a color element including rSlide for red, gSlide for
green, and bSlide for blue. The most pertinent properties of the Slider are min:Number
and max:Number. These properties specify the range of values that the slider represents. In
our code, each slider instance is declared with min=0 and max=255, corresponding to the
numeric ranges of the RGB color values. The user can only slide the knob between the min
value and the max values (inclusive).

As the user drags the knob, the slider updates its value:Number property. This property
indicates the currently selected value based on the knob position on the track. For instance,
when the user slides the knob all the way to the right-hand side, the value property of the
slider will be set to 255.

The Circle instance circ is used to relect the color changes as the slider values are updated.
To do this, the fill:Color property of the circle is assigned a Color instance, where each
element of the RGB color is bound to slider rSlide.value, gSlide.value, and bSlide.
value respectively, as shown in the next code snippet. Whenever a color value changes, the
bind generates a new Color instance to apply to the circle.

var circ = Circle {
 fill : bind Color.rgb(
 rSlide.value, gSlide.value, bSlide.value
)
...
}

See also
 f Introduction

 f Creating a form with JavaFX controls

Chapter 4

131

Showing progress with the progress
controls

As a rich client platform, you will undoubtedly create long-running processes in JavaFX. You
will, for instance, need to connect to a remote web server in order to download images or
access large data set from a database server. In either case, it is imperative that the user's
expectation is managed properly during the execution of these processes, or your application
runs the risk of being labeled broken.

One of the most popular ways by which rich client applications manage the user experience
during long-running processes is through the use of progress indicator widgets. This recipe
shows you how to use JavaFX's built-in progress indicator controls to show progress of a
long-running processes.

Getting ready
The progress controls are part of the standard GUI controls offered by JavaFX in the javafx.
scene.control package. If you have not used the JavaFX controls, it may be helpful to
review the recipe Creating a form with JavaFX controls for some background information.
JavaFX offers two progress controls that you can use to provide feedback on the progress
of long running processes: ProgressBar and the ProgressIndicator. Both controls
function in the same way, but render their feedback to the user differently.

For this recipe, we are going to simulate a long-running process using a Timeline instance.
The Timeline class lets us implement a timer that counts and pauses in-between counts,
which is perfect for simulating long-running activities that can update a progress control.
You can ind out how to use the Timeline as a timer in the recipe Building animation with
the KeyFrame API in Chapter 3, Transformations, Animations, and Effects.

How to do it...
The code presented here shows you how to use the ProgressBar component to track the
progress of a long running process. As mentioned earlier, to keep things manageable, the long
running process is simulated by a Timeline instance used as a timer. You can get the full
listing of the code from ch04/source-code/src/controls/ProgressBarDemo.fx.

var w = 400;

var h = 200;

var total = 400;

var counter = 0;

def prog = ProgressBar {

 progress: bind ProgressBar.computeProgress(total, counter)

 effect:DropShadow{offsetY:3 offsetX:3}

Components and Skinning

132

 width: w - 100

}

prog.layoutX = (w - prog.layoutBounds.width)/2;

prog.layoutY = (h - prog.layoutBounds.height)/2;

def timer:Timeline = Timeline {

 repeatCount: Timeline.INDEFINITE

 interpolate:false

 keyFrames:[

 KeyFrame{

 time:100ms

 action:function():Void {

 if(counter <= total){

 counter++;

 }else{

 //counter = 0;

 timer.stop();

 }

 }

 }

]

}

timer.play();

def progTxt:Text = Text {

 layoutX:(prog.width)/2

 layoutY:prog.layoutY - 30

 content: bind "Progress: {%.0f prog.progress*100}%"

 font:Font.font("Arial", FontWeight.BOLD, 22)

 fill:Color.BLUE

 opacity:0.25

}

When the code is executed, it shows a ProgressBar control on the screen being updated as
shown in the next screenshot.

Chapter 4

133

How it works...
The code in this recipe demonstrates an example of how to use the ProgressBar control to
provide gradual feedback on a long-running process. The control works simply. It only requires
the property progress:Number to be provided. This is a ratio, between 0.0 and 1.0, of the
completed activity. The control uses that value to draw the progress bar accordingly.

In the recipe, in order to continually update the progress bar, we bind the progress
property to the convenience function ProgressBar.computeProgress(total:Number,
current:Number) to calculate the progress ratio with the following code segment:

def prog = ProgressBar {
 progress: bind ProgressBar.computeProgress(total, counter)
...
}

In this recipe, the long-running process is simulated using an instance of Timeline named
timer. In the code, the Timeline instance includes a KeyFrame which restarts repeatedly
every 100ms due to repeateCount=Timeline.INDEFINITE. At the end of each 100ms,
the KeyFrame executes the function attached to the action property. In our example, that
function basically increments the variable counter by one if it is less than or equal to the
variable total. Otherwise, it stops the timeline. With every increment of counter, it causes
the ProgressBar instance to update itself because it is bound to the variable counter
through the progress property (see previous code snippet).

There's more...
As mentioned earlier in the recipe, JavaFX also offers the ProgressIndicator control
as another class, which can be used to provide users with feedback of progress during a
long-running process. The ProgressIndicator operates in the exact same way as the
ProgressBar and exposes the progress:Number property as a way to indicate the ratio
of completion. ProgressIndicator, however, is rendered as a circular dial when displaying
progress. ProgressIndicator class is suitable for cramped areas where the bar may take
too much screen real estate. You can see an example of the progress indicator in ch04/
source-code/src/controls/ProgressIndicatorDemo.fx. It is the same code as
presented above; however, it uses a ProgressIndicator instead of a ProgressBar, as
shown in the next screenshot.

Components and Skinning

134

See also
 f Chapter 2—Building animation with the KeyFrame API

 f Introduction

 f Creating a form with JavaFX controls

Creating a custom JavaFX control
In previous recipes in this chapter, we have used the standard JavaFX controls to create
application GUIs. Inevitably, you will have an idea for a component with speciic behaviors and
usage not offered by the standard set of controls. What do you do? Fortunately, creating your
own control is as easy as creating a new class. In this recipe, you will learn how to create your
own reusable GUI control.

Getting ready
As mentioned in the introduction for this recipe, creating a custom control is as easy as
creating a new class. If you are not familiar with the topic of class creation and issues with
accessibility and visibility of class members, review the recipes Declaring and using JavaFX
classes from Chapter 1, Creating your own custom node from Chapter 2, and Making your
scripts modular, also from Chapter 2. If you are not familiar with the JavaFX Control API,
review the recipe Creating a form with JavaFX controls from this chapter.

How to do it...
The abbreviated version of the code for this custom control is shown next. It creates a class
called Deck that stacks its content (a collection of nodes) from back to front. The control
lets you shufle the the content by shifting objects from the top to the bottom of the stack
(or vice-versa). You can access the full listing of the code from ch04/source-code/
custom/DeckControl.fx.

Let's explore how the code works:

1. First, let's deine the Deck class by extending the Control class:
class Deck extends Control {

 // properties

 override public var width = 200;

 override public var height = 100;

 public var roundCornerSize:Integer = 0;

 public var borderSize:Integer = 2;

 public var borderColor:Color = Color.BLACK;

 public var slideOffset:Integer=20;

 public var duration:Duration = 300ms;

Chapter 4

135

 public var enableReflection:Boolean = true;

 public var fill:Paint = LinearGradient { ... }

 def stack = Group{}

 public function add(n:Node){

 insert createCard(n) into stack.content

 }

 ...

 public function remove(idx:Integer){

 def obj = stack.content[idx];

 delete obj from stack.content;

 }

 public function shiftBackToFront():Void {

 def node = stack.content[0];

 animate(node, 0);

 }

 public function shiftFrontToBack():Void {

 def node =

 stack.content[(sizeof stack.content)-1];

 animate(node, 1);

 }

...

 override function create():Node {

 ...

 stack

 }

 function createCard(node:Node):Group { ... }

 function animate(node:Node, dir:Integer){

 TranslateTransition {

 ...

 action:function(){

 if(dir == 0)

 node.toFront()

 else

 node.toBack()

 }

 }.playFromStart();

 }

}

Components and Skinning

136

2. Next, we create an instance of Deck and add objects to its contents:
def w = 400;

def h = 320;

var scene:Scene;

def deck:Deck = Deck{

 width:w-100 height:h-100

 translateX:(w -(w-200))/2 translateY:(h-(h-100))/2

 slideOffset:50

 duration:300ms

 roundCornerSize:20

}

deck.add(Rectangle {width:150 height:100 fill:Color.RED});

deck.add(Circle{radius:70 fill:Color.BLUE});

deck.add(ImageView{

 image:Image{url:"{__DIR__}image1.png"}fitWidth:200

 preserveRatio:true

});

3. Lastly, we add interactions by creating buttons to animate the deck:

def leftBtn = Button {

 text:"<<"

 action:function(){

 deck.shiftBackToFront();

 }

}

def rightBtn = Button {

 text:">>"

 action:function(){

 deck.shiftFrontToBack();

 }

}

When the component is added to the stage, and the code is executed, you should see the
application as shown in the next screenshot. When the buttons are pressed, it slides the top
object (or bottom, depending on the button pressed) in the stack from the top to the bottom
of the stack (hard to capture with the screenshot).

Chapter 4

137

How it works...
The lengthy (yet abbreviated) code segment shows you how to implement a custom control
class. This is done by extending the Control class from which our control will inherit several
properties and behaviors. For our Deck control, let's explore how it works.

 f Deining the control—the Deck class extends the Control class, which extends
CustomNode. As a matter of fact, creating a custom control works in the same way
as creating a custom node; you need override function create():Node to
return the control you want to create. In our code example, we return an instance of
Group as the container for our Deck class.

 f Class properties—all public variables declared in the class deinitions will be
treated as class properties. Our custom Deck control will expose the following
self-explanatory properties:

 � roundCornerSize:Integer;

 � borderSize:Integer = 2;

 � borderColor:Color;

 � slideOffset:Integer=20;

 � duration:Duration = 300ms;

 � enableReflection:Boolean

The class Deck will also inherit properties from the base class Control.

 f The Deck.add() function—the Deck class exposes the Deck.add(node:Node)
function to add items to the stack (internally managed by an instance of Group
assigned to variable stack). The function wraps the added node in a virtual card
for the deck by calling createCard() which basically returns a Group instance
containing the added node and a Rectangle instance as a background. The card
is then added to the content sequence of the deck's internal stack.

Components and Skinning

138

 f The Deck.remove() function—as a measure of convenience, a remove function is
provided to remove node objects added to the stack easily.

 f The stack shufle—the Deck class exposes the public functions
shiftBackToFront() and shiftFrontToBack() to trigger the shufle animation
sequence. Function shiftBackToFront() picks a card from the bottom of the
stack and places it on top. Conversely, the function shiftFrontToBack() takes a
card from the top of the stack and slides it to the bottom.

Both functions use the internal animate() function to create the animation
sequence that slides the card out and back in the stack. This is accomplished by
using a simple TranslateTransition class that moves the card away from the
stack to a given distance (controlled by Deck property slideOffset), then reverses
the animation sequence to bring the card back to the stack.

At the end of the initial slide sequence (away), the TranslateTransition calls
its internal function attached to the property action:function() to change
the Z-order of the card by moving it to the back using the toBack() function
(or toFront(), depending on the operation invoked).

 f Using the Deck—to use the Deck class you simply create an instance of it and place
it in a scene graph. In the code, we assign an instance of Deck to the variable
deck, with a literal declaration that sets the properties slideOff, duration, and
roundCornerSize. Notice that we have access to Control-exposed properties such
as dimensions, translations, and so on.

To add cards to the deck, we invoke the Deck.add() function. In the code example,
we add several nodes to the deck including Shape instances and images using
ImageView (covered in Chapter 5, JavaFX Media). The nodes are stacked from
bottom to top, so the last node added is displayed and earlier nodes are hidden
behind it. The class automatically centers the node instance on the rectangle.

Finally, we add two buttons to drive the animation. The button labeled >> calls the
method Deck.frontToBack(), sliding the top card out and into the bottom of the
stack. The button labeled <<, on the other hand, slides the card from the bottom and
places it on top of the stack.

See also
 f Chapter 1—Declaring and using JavaFX classes

 f Chapter 1—Creating and using JavaFX functions

 f Chapter 2—Creating your own custom node

 f Chapter 2—Making your scripts modular

 f Introduction

Chapter 4

139

Embedding Swing components in JavaFX
As explained in the Introduction of this chapter, the Swing GUI framework has evolved into
a set of rich GUI components, which developers have come to love over the years. Suppose,
however, you want to continue using Swing in your JavaFX application; what do you do? This
recipe shows you how to use the JavaFX wrapper APIs for Swing to embed Swing components
in JavaFX scripts.

Getting ready
The JavaFX Swing wrapper classes let developers embed Swing components directly into
JavaFX applications. The wrapper API can be found in the package javafx.ext.swing. For
this recipe, it is assumed that you are familiar with using Swing components. It will also be
helpful to be familiar with JavaFX's Control API. To illustrate how to embed Swing components
in JavaFX, we have converted the data form introduced in the recipe Creating a form with
JavaFX controls, to use all Swing components.

How to do it...
The next code snippet shows you how to embed Swing controls in JavaFX. Since this
example is based on the data form introduced earlier in the recipe Creating a form with
JavaFX controls, the code will be abbreviated down to the essentials. You can, however,
get a full listing of the code discussed here from ch04/source-code/src/controls/
DataFormWithSwing.fx.

def rdoBtns = SwingToggleGroup{};
var nameRow = HBox {spacing:7
 content:[
 VBox{content:[SwingLabel{text:"First Name"},
 SwingTextField{id:"fName" columns:10}]}
 VBox{content:[SwingLabel{text:"Last Name"},
 SwingTextField{id:"lName" columns:10}]}
]
}

...

var titleRow = HBox {spacing:7
 content:[
 HBox{
 nodeVPos:VPos.CENTER spacing:7
 content:[
 SwingLabel{text:"Title:"}
 SwingRadioButton{
 text:"Programmer"
 toggleGroup:rdoBtns id:"pgmr"}

Components and Skinning

140

 SwingRadioButton{
 text:"Manager"
 toggleGroup:rdoBtns id:"mngr"}

 SwingRadioButton{
 text:"Janitor"
 toggleGroup:rdoBtns id:"gntr"}
]
 }
]
}

var attndRow = HBox {spacing:7

 nodeVPos:VPos.CENTER
 content:[
 SwingCheckBox{id:"isattnd"

 text:"Mark as Attendee"}
]
}

var btnRow = HBox {

 spacing:7
 content:[
 SwingButton{

 text:"Submit"
 action:function(){
 // display data
 }
 }
 SwingButton{text:"Clear"}

]
}

When the code runs, it will produce the form shown in the next screenshot. Compare this to
the form produced by using JavaFX controls in the recipe Creating a form with JavaFX controls.

Chapter 4

141

How it works...
The form built in this recipe uses the same layout structure as the form found in the recipe
Creating a form with JavaFX controls. The controls are organized in the same manner, using
HBox and VBox layout managers to arrange GUI controls in rows and columns. The difference,
however, is in the controls that are used in the form. Instead of native JavaFX controls, their
Swing counterparts are used.

JavaFX provides a collection of controls that serve as wrappers for standard Swing controls.
The Swing components themselves are encapsulated in instances of javafx.ext.swing.
SwingComponent, which is a Node instance that can be attached to the scene graph.

The code for the recipe uses several of these wrapper classes, including:

 f SwingLabel—this class renders the Swing counterpart to the JavaFX Label control.
It wraps and displays the Swing's JLabel control.

 f SwingTextField—this wraps the Swing counterpart to JavaFX's TextBox
control. Under the hood, the SwingTextField wrapper class renders the Swing's
JTextField component.

 f SwingRadioButton—this class represents Swing's counterpart to the
JavaFX RadioButton control. Internally, the SwingRadioButton renders
the Swing JRadioButton control. To get SwingRadioButton instances
to toggle as a group, you must specify a toggle group through the property
toggleGroup:SwingToggleGroup. In the recipe, we deine variable
rdoBtns as the toggle group.

 f SwingCheckBox—this class represents Swing's counterpart to the JavaFX control
CheckBox. Under the hood, SwingCheckBox class renders an instance of
Swing's JCheckBox.

 f SwingButton—this class represents Swing's counter part to JavaFX Button control.
Under the hood, the SwingButton renders a JButton instance on the screen.

Swing controls wrapped in the SwingComponent classes behave as regular JavaFX nodes
and can be added to the scene graph. To locate an instance of a SwingComponent, we use
the id:String property and function Scene.lookup(id:String), as is done with native
JavaFX controls.

Components and Skinning

142

There's more...

Wrapping custom Swing controls into JavaFX node
What if you wanted to use an existing custom Swing component as part of your JavaFX
application? Well, JavaFX provides an easy way to transform existing Swing components
into JavaFX node instances, which can be graphed into the scene using a script-level utility
function SwingComponent.wrap(swing:javax.swing.JComponent). For instance:

var mySwingComponent = new CustomSwingComponent();

var fxNode = SwingComponent.wrap(mySwingComponent);

When using the SwingComponent.wrap() function, you should be aware of the following:

1. Your Swing component must be a descent of the JComponent class.

2. You lose the JavaFX idioms, such as class properties, function variables, and so on.
You must use Java-style getter and setters accessors to access instance values, and
you cannot use function variables to handle events.

Creating a Swing control façade from JavaFX
As we have seen previously, it is a rather easy exercise to wrap existing Swing components
using the SwingComponent.wrap() function. A more elegant way is to wrap your custom
Swing controls yourself by encapsulating them within a JavaFX façade class. The beneit
of this approach is having full control over the way your Swing controls are initialized and
exposed. Since you are wrapping your Swing components in a JavaFX class, you will be
able to retain the JavaFX idioms for creating and managing object instances.

The (very) abbreviated code snippet next shows you how this can be done by extending a class
SwingComponent and implementing function createJComponent():JComponent.

class PopupMenu extends SwingComponent {
 var button:JButton;
 var menu:JPopupMenu;
...
 override function createJComponent():JComponent{
 button = new JButton();
 menu = new JPopupMenu();
 menu.setBorderPainted(true);

 button.addActionListener(ActionListener{
 public override function
 actionPerformed(e:ActionEvent) {
 menu.show(button, 0,button.getHeight()-5);
 }
 });
 button;
 }
...

Chapter 4

143

}

// using PopupMenu in JavaFX
PopupMenu{
 items:[
 MenuItem{
 title:"Hello!",
 action:function({Alert.inform("Hi!")}
 }
]
}

Class PopupMenu, deined above, is a façade that encapsulates and manages two Swing
components, mainly a JButton and a JpopupMenu. Function createJComponent()
initializes the internal Swing components and returns an instance of the JButton. You
can get the full code listing for this example from ch04/source-code/src/custom/
SwingFacadeDemo.fx.

See also
 f Chapter 1—Declaring and using JavaFX classes

 f Chapter 2—Creating your own custom node

 f Introduction

 f Creating a custom JavaFX control

Styling your applications with CSS
In previous recipes, we have seen how to control the look and feel of JavaFX graphical
nodes programmatically by setting property values on the node directly. Programmatic style
manipulation works just ine, but is hard to externalize. If you want to update the look of your
application, you must recompile. However, JavaFX also offers a way to declare styles using
Cascading Style Sheets (CSS). This recipe shows you how to apply styles declaratively to
JavaFX graphical nodes using CSS.

Getting ready
Before going through this recipe, you should have an idea of what CSS is and how it is used
for designing HTML web pages. Similar concepts are discussed here and other CSS-related
recipes in this chapter. CSS was created by the web governing body W3C and is traditionally
used for markup development languages such as HTML and other XML-derivatives (XUL,
SVG, and so on). For information about CSS, visit http://en.wikipedia.org/wiki/
Cascading_Style_Sheets.

Components and Skinning

144

To illustrate how to use CSS concepts, we are going to reuse the form created in the recipe
Creating a form with JavaFX controls. In this recipe, we will extend the code for the form
to include CSS formatting. Since the form code has been discussed previously, we will
concentrate on the CSS portion of the code.

How to do it...
The abbreviated code snippet given next shows instances where CSS is used to format GUI
control elements in the data input form. You can see the full listing of the code in ch04/
source-code/src/styling/DataFormInlineCssDemo.fx.

def heading = Text{

 content:"Employee Information"

 style:"font-family:\"Helvetica\";"

 "font-size:24pt;"

 "font-weight:bold;"

}

def nameRow = HBox {

 spacing:7

 content:[

 VBox{content:[

 Label{text:"First Name" style:"textFill:blue"},

 TextBox{

 id:"fName"

 style:"textFill:yellow; "

 "backgroundFill:lightblue;"

 "borderFill:lightblue"

 }

]}

]

}

...

def btnRow = HBox {

 spacing:7

 content:[

 Button{

 text:"Submit"

 style:"textFill:blue;fill:lightblue"

 }

 Button{text:"Clear"

 style:"textFill:blue;fill:lightblue"}

]

}

Chapter 4

145

When the code for the form containing the CSS styling is executed, it will produce the form
shown in the next screenshot:

How it works...
Cascading Style Sheets (CSS) facilitate the separation of visual content in the scene
graph from the styling of that content. CSS provides a declarative language to express the
presentation and formatting semantics of the associated content. All Node instances in
JavaFX expose the property style:String, which lets you inject CSS directives directly in
your JavaFX code, similar to the style attribute in an HTML document.

In our previous code snippet, we used the style property to format the GUI elements in the
form. The irst element formatted is the Text instance. As you can see, using the CSS, you
can specify all formatting attributes about the text including font-family, size, and weight.
The code also shows you how to apply inline CSS styling directives to controls such as Label,
TextInput, and Button instances.

There's more...

JavaFX CSS
Due to its wide adoption, CSS has been ported to non-XML-based languages, such as JavaFX.
CSS in JavaFX is similar to the W3C's CSS language only in functionality. The JavaFX's version
of CSS works as a declarative meta-programming language that lets developers declare
formatting and layout directives of JavaFX nodes. When you declare a style in CSS, the JavaFX
runtime matches the CSS property name to the node's property with the same name. So,
when you see:

var circle = Circle {

 style:"center-x: 140; "

}

Components and Skinning

146

JavaFX will match the style property center-x to the Circle.centerX property. The CSS
parser substitutes the - and the following letter with an uppercase letter to form a camel-case
notation. So, the style property arc-width maps to the node property arcWidth, and so
forth. If you do not like the style property name with the dash, you can use the actual node's
property name as the style name as follows:

var circle = Circle {

 style:"centerX:100,centerY:100"

}

The runtime module will set the circle's centerX and centerY property to 100.

Because the CSS parser maps node property names to style properties, as of version 1.2 of
the SDK, you can use style declarations to set pretty much all node properties of type Number
and Integer, String, Paint, and Font. At this time, other value types will cause a
parsing exception.

Styling Text nodes with CSS
Font style names for the Text node do not map directly to properties attached to the Text
class. Recall that text is styled as follows:

var txt = Text {

 content: "Hello!"

 font: Font {name: "Helvetica" size:12}

}

In order to support the semantics of the W3C's guidelines, the JavaFX CSS parser provides
shortcuts which apply the CSS style properties for font directly to the Text instance. Hence,
the following code will format and apply font styles to the text:

var txt = Text {

 content: "Hello!"

 style: "font-family:\"Helvetica\";"

 "font-size:24pt;"

 "font-weight:heavy;"

}

Two things that you should notice with this declaration:

1. The Text node does not have an instance of Font{} attached to it. However, Text still
receives font styles from the CSS declaration.

2. The Text node does not have the properties fontFamily, fontSize, and
fontWeight. The CSS engine igures out how to apply the font styles to the
text node directly.

Chapter 4

147

Styling Paint properties with CSS
JavaFX lets you declare color styles in three ways, including the RGB hexadecimal, the color
name, and the RGB decimal values as shown in the following snippets:

Rectangle {

 style:"fill:#33FFCC;stroke:#0000FF;"

}

Circle {

 style:"fill:red;stroke:blue;"

}

MyCustomNode {

 style:"fill:rgb(150,44,96);stroke:rgb(255,55,148);"

}

The CSS engine also supports a shortcut notation that lets developers specify paint gradients:

Circle {

 style:"fill:linear(100%, 0%)"

 "to (0%,0%)"

 "stops (0.0, red), (1.0, white);"

}

Rectangle {

 style:"fill:radial (0%, 0%) , 50% focus(25%, 25%)"

 "stops (0.00, red), (1.0, white);"

}

For linear gradients, JavaFX's CSS has the linear(startX,startY), to(endX, endY),
and stops(offset,color) directives to build the gradient. For radial gradients, JavaFX
provides the radial(centerX,centerY), radius-value focus(focusX,focusY),
and the stops(offset, color) directives.

See also
 f Chapter 3—Applying cool paint effects with gradients

 f Introduction

 f Creating a form with JavaFX controls

Components and Skinning

148

Using CSS iles to apply styles
As your application grows beyond a few GUI components, you will ind it cumbersome and
impractical to use inline CSS directives to apply styles. Similar to HTML documents, the JavaFX
platform provides the necessary mechanism to externalize style declarations in one or more CSS
iles. In this recipes we will explore how to create and attach a CSS ile to your applications.

Getting ready
Before you go through this recipe, you should have an idea of what CSS is and how it is used.
Review the previous recipe Styling your applications with CSS to get an idea of how JavaFX
CSS works. You will create a simple application and an accompanying stylesheet ile. We will
examine how the elements are styled using the declared styles in the CSS ile.

How to do it...
For this recipe, we are going to create a simple application.

1. The following is the code for the application that will be styled. The full listing of the
code for the application can be found in ch04/source-code/src/styling/
ExternalCssDemo.fx.
def w = 400;

def h = 200;

def panel = VBox {

 width:w height:h nodeHPos:HPos.CENTER spacing:10

 content:[

 Text{content:"External CSS" id:"titleText"}

 HBox{

 width:w height:h nodeVPos:VPos.CENTER spacing:5

 content:[

 Circle{radius:50}

 Rectangle{

 width:100 height:70 styleClass:"broad"

 }

 Line{startX:0 endX:100 styleClass:"broad"}

]}

 Text{

 content:"Pay Attention!"

 styleClass:"specialText"

 }

Chapter 4

149

 Text{content:"All objects styled with CSS"}

]

}

Stage {

 title : "External CSS Example"

 scene: Scene {

 width: w

 height: h

 content: [panel]

 stylesheets:["{__DIR__}main.css"]

 }

}

2. Next, in a separate CSS ile, we will declare the styles that are applied to the
application. You can ind the full listing of the CSS ile in ch04/source-code/src/
styling/main.css.
Scene {

 fill:linear (0%, 0%) to (0%,100%)

 stops (0.0, grey), (1.0, white)

}

Rectangle {

 fill:yellow;

 strokeWidth:2;

 arcWidth:10;

 arcHeight:10;

}

Circle {

 fill:silver;

 strokeWidth:2;

 stroke:black

}

Text {

 fill:blue;

 font-family:"Arial,Sans";

 font-size:12pt

}

#titleText {

 fill:white;

Components and Skinning

150

 font-family:"Arial Black";

 font-size:24pt

}

.specialText {

 fill:red;

 font-family:"Arial Black";

 font-size:16pt

}

.broad{

 stroke:red;

 strokeWidth:4

}

When the code for this application is executed (given that the CSS ile is located in the same
directory as the JavaFX source ile), you will get the result shown in the next screenshot:

How it works...
The beauty of styling with CSS becomes apparent when you deine your styles in a CSS
ile and reuse your styles throughout your application. In this recipe, we created a simple
application which uses styles declared in a separate ile.

Let's explore the JavaFX code irst. Reviewing the code, you can see that the shapes used in
the application have little or no style properties deined in the code. However, as seen in the
previous screenshot, they have plenty of visual properties applied. This is how:

 f Circle—the Circle shape receives its styles due to the Circle{} type selector deined
in the CSS ile. The deinition of the type selector Circle{} causes any Circle type
deined in the code to be styled using that selector.

Chapter 4

151

 f Rectangle—the CSS engine injects two styles into the Rectangle instance. The
rectangle inherits default style deined by CSS type selector Rectangle{} in the
CSS ile. In addition, the rectangle receives the styles deined by CSS class selector
.broad because its styleClass property is set to "broad".

 f Line—the Line instance is styled using CSS class selector .broad because its
styleClass property is set to "broad".

 f Text 1—the irst text with content "External CSS" is styled using the CSS ID
selector rule. The CSS engine applies styles deined for ID selector #titleText
to the node instance with id="titleText".

 f Text 2—the text with content "Pay Attention!" is styled using the CSS class
selector .specialText by setting the property styleClass to "specialText".

 f Text 3—the last Text node receives its styles by default due to the CSS type selector
Text{} deined in the CSS ile.

The last and most important thing to note in the code is the way the CSS ile is attached to
the application. This is done by setting the property Scene.stylesheets to a sequence
of the locations of the CSS iles. In our example, the stylesheet is speciied with the next
code snippet:

Stage {

 Scene {

 stylesheets:["{__DIR__}main.css"]

 }

}

Now, let's examine the CSS ile. Similar to W3C's stylesheet deinition, JavaFX style declarations
are made up of style selectors, followed by a rule block, which contains the style properties.
In JavaFX, the selector can match a JavaFX class name, a node id property, or a node's
styleClass property. In our previous example, the CSS ile main.css deines all of our
style selectors. Let's take a look:

 f Type selector—the CSS ile has several type selectors including Scene, Rectangle,
Circle, and Text. When JavaFX nodes are being rendered, the CSS engine will
apply the styles that match instances of JavaFX types with the same name. You can
use the type's full name in the CSS ile when deining the selector block.

 f ID selector—in the CSS ile, we have the #titleText selector block deined. This
declaration deines a style using the ID selector rule. Only the node with property
id="specialText" will receive styles deined by this selector.

 f CSS class selector—the CSS ile contains two CSS class selector deinitions
including .specialText and .broad. The styles deined by these selectors
will be applied to any node instance that has its property styleClass set to
"broad" or "specialText".

Components and Skinning

152

There's more...

Pseudo-classes
In CSS, the pseudo-class allows you to designate the behavior of the entity receiving the style
when there is interaction with the user. JavaFX's CSS has out-of-the-box support for pseudo-
classes including :hover, :pressed, and :focused. As you might imagine, you use these
pseudo-classes to specify the styles when a component is hovered, pressed, or receives focus
respectively, as demonstrated in the next code snippet:

.myButton:hover {

 fill:silver;

 strokeWidth:2

}

Cascading styles
JavaFX CSS supports styles that can be cascaded, using a combination of the selectors
identiied earlier:

 f Text#titleText{}—this selector deines styles to be applied only to a Text
instance with property id set to "titleText".

 f Rectangle.broad{}—applies the style only to Rectangle types with property
styleClass set to "broad".

 f .broad:hover{}—this selector deines the hover behavior only for node instances
with their styleClass property set to "broad".

These can be chained in any combination to deine ine-grained style rules which will be
applied to entities which meet the rule criteria.

See also
 f Introduction

 f Styling your applications with CSS

Skinning applications with multiple CSS iles
The beneit of externalizing CSS is the ability to update the look and feel of your application
without having to update the code or recompile. Another attractive aspect of externalizing CSS
is to let your users select a preferred theme or applying a skin. In this recipe, we are going to
extend the data input form example, used throughout this chapter, to add skinning capabilities
with CSS.

Chapter 4

153

Getting ready
The concepts presented here all deal with CSS and externalizing through CSS iles. If you have
not used CSS, or are unfamiliar with JavaFX's support for CSS, it is recommended that you
review the recipe Styling your applications with CSS and Using CSS iles to apply styles from
this chapter to get acquainted with JavaFX 's implementation of CSS.

This recipe is going to reuse the data form example used throughout the chapter. Refer to the
recipe Creating a form with JavaFX controls for a thorough background on this example. In this
usage, we extend the code in the form to support skinning using JavaFX CSS. In this version,
the user is able to apply one of two themes to update the look of the application.

How to do it...
Again, the code that creates the data form has been discussed in earlier recipes (see Getting
ready). Hence, we are going to concentrate on how to update application's styles in real-time
without a restart. If you want to see the full code listing of the application, refer to ch04/
source-code/src/styling/DataFormSkinnableCss.fx.

The super abbreviated code snippet given next provides the part of the code that updates the
CSS iles. This is done as follows:

var cssFile = "bluemoon.css";

...

var btnRow = HBox {

 spacing:7

 content:[

 Button{

 text:"Bluemoon.css"

 action:function(){

 cssFile = "bluemoon.css"

 }

 }

 Button{text:"Autumn.css"

 action:function(){

 cssFile = "autumn.css";

 }

 }

]

}

...

Stage {

 title : "Skinnable Data Input Form"

 scene: scene = Scene {

Components and Skinning

154

 width: w

 height: h

 content: [Group{ layoutX:10 content:panel}]

 stylesheets: bind ["{__DIR__}{cssFile}"]

 }

}

The application uses two separate CSS iles. One is named bluemoon.css and applies a
blue theme to all controls on the form. Autumn.css applies a Fall-colored theme to objects
that use its styles. We are not going to show the CSS iles here. To get a full listing of the
CSS iles, refer to ch04/source-code/src/styling/bluemoon.css and ch04/
source-code/src/styling/autumn.css.

The next screenshot shows the application using both themes:

How it works...
This recipe presents the technique to create a skinnable application using JavaFX CSS. The
skin is implemented using CSS style directives encapsulated in a ile. For our recipe, we
use two CSS iles bluemoon.css and autumn.css. Each CSS ile has the same styling
elements. However, each applies a different theme based on color. The bluemoon.css ile
uses the blue family of colors to style its components. The autumn.css ile uses the same
CSS elements, but paints everything using Fall-color theme (browns, gold, orange, and so on).

The application lets users select between the two stylesheets to update the skin for the
application. In the code, we declare the variable cssFile to store the name of the currently
applied CSS ile. When the user clicks on the button labeled Bluemoon.css it sets the variable
cssFile = "bluemoon.css". When the user clicks on the button labeled Autumn.css it
sets cssFile = "autumn.css".

Chapter 4

155

The Scene.stylesheets property is bound to variable cssFile using the expression
Scene{stylesheets: bind ["{__DIR__}{cssFile}"]}. When the value of the
variable cssFile is updated (by pressing one of the buttons), it automatically updates
the stylesheet for the scene. That's it!

See also
 f Introduction

 f Creating a form with JavaFX controls

 f Styling your applications with CSS

 f Using CSS iles to apply styles

5
JavaFX Media

In this chapter, we will cover the following topics:

 f Accessing media assets

 f Loading and displaying images with ImageView

 f Applying effects and transformations to images

 f Creating image effects with blending

 f Playing audio with MediaPlayer

 f Playing video with MediaView

 f Creating a media playback component

Introduction
One of the most celebrated features of JavaFX is its inherent support for media playback.
As of version 1.2, JavaFX has the ability to seamlessly load images in different formats, play
audio, and play video in several formats using its built-in components. To achieve platform
independence and performance, the support for media playback in JavaFX is implemented
as a two-tiered strategy:

 f Platform-independent APIs—the JavaFX SDK comes with a media API
designed to provide a uniform set of interfaces to media functionalities.
Part of the platform-independence offerings include a portable codec
(On2's VP6), which will play on all platforms where JavaFX media playback
is supported .

 f Platform-dependent implementations—to boost media playback performance,
JavaFX also has the ability to use the native media engine supported by the
underlying OS. For instance, playback on the Windows platform may be
rendered by the Windows DirectShow media engine (see next recipe).

JavaFX Media

158

This chapter shows you how to use the supported media rendering components, including
ImageView, MediaPlayer, and MediaView. These components provide high-level APIs that let
developers create applications with engaging and interactive media content.

Accessing media assets
In previous chapters, you have seen the use of variable __DIR__ when accessing local
resources, but little detail was offered about its purpose and how it works. So, what does that
special variable store? In this recipe, we will explore how to use the __DIR__ special variable
and other means of loading resources locally or remotely.

Getting ready
The concepts presented in this recipe are used widely throughout the JavaFX application
framework when pointing to resources. In general, classes that point to a local or remote
resource uses a string representation of a URL where the resource is stored. This is especially
true for the ImageView and MediaPlayer classes discussed in this chapter.

How to do it...
This recipe shows you three ways of creating a URL to point to a local or remote resource used
by a JavaFX application. The full listing of the code presented here can be found in ch05/
source-code/src/UrlAccess.fx.

Using the __DIR__ pseudo-variable to access assets as packaged resources:

var resImage = "{__DIR__}image.png";

Using a direct reference to a local ile:

var localImage =

 "file:/users/home/vladimir/javafx/ch005/source-code/src/image.png";

Using a URL to access a remote ile:

var remoteImage = "http://www.flickr.com/3201/2905493571_a6db13ce1b_d.
jpg"

How it works...
Loading media assets in JavaFX requires the use of a well-formatted URL that points to the
location of the resources. For instance, both the Image and the Media classes (covered
later in this chapter) require a URL string to locate and load the resource to be rendered.
The URL must be an absolute path that speciies the fully-realized scheme, device, and
resource location.

Chapter 5

159

The previous code snippets show the following three ways of accessing resources in JavaFX:

 f __DIR__ pseudo-variable—often, you will see the use of JavaFX's pseudo variable
__DIR__, used when specifying the location of a resource. It is a special variable
that stores the String value of the directory where the executing class that referenced
__DIR__ is located. This is valuable, especially when the resource is embedded in
the application's JAR ile. At runtime, __DIR__ stores the location of the resource in
the JAR ile, making it accessible for reading as a stream. In the previous code, for
example, the expression {__DIR__}image.png explodes as jar:file:/users
/home/vladimir/javafx/ch005/source-code/dist/source-code.jar!
/image.png.

 f Direct reference to local resources—when the application is deployed as a desktop
application, you can specify the location of your resources using URLs that provides
the absolute path to where the resources are located. In our code, we use ile:/users/
home/vladimir/javafx/ch005/source-code/src/image.png as the absolute
fully qualiied path to the image ile image.png.

 f Direct reference to remote resources—inally, when loading media assets, you are
able to specify the path of a fully-qualiied URL to a remote resource using HTTP.
As long as there are no subsequent permissions required, classes such as Image
and Media are able to pull down the resource with no problem. For our code, we
use a URL to a Flickr image http://www.flickr.com/3201/2905493571_
a6db13ce1b_d.jpg.

There's more...
Besides __DIR__, JavaFX provides the __FILE__ pseudo variable as well. As you may
well guess, __FILE__ resolves to the fully qualiied path of the of the JavaFX script ile that
contains the __FILE__ pseudo variable. At runtime, when your application is compiled, this
will be the script class that contains the __FILE__ reference.

Loading and displaying images with
ImageView

If you have already checked out recipes in previous chapters, you know by now that
JavaFX provides classes, which make it easy to load and display images. This recipe
takes a closer look at the mechanics provided by the Image API to load and display
images in your JavaFX applications.

JavaFX Media

160

Getting ready
This recipe uses classes from the Image API located in the javafx.scene.image package.
Using this API, you are able to conigure, load, and control how your images are displayed using
the classes Image and ImageView. For this recipe, we will build a simple image browser to
illustrate the concepts presented here. The browser allows users to load an image by providing
its URL. You will use standard JavaFX controls, such as text boxes and buttons, to build the GUI.
If you are not familiar with the standard GUI controls, review the recipe Creating a form with
JavaFX controls from Chapter 4, Components and Skinning.

How to do it...
The code given next has been shortened to illustrate the essential portions involved in loading
and displaying an image. You can get a full listing of the code from ch05/source-code/
src/image/ImageBrowserSimpleDemo.fx.

def w = 800;

def h = 600;

var scene:Scene;

def maxW = w * 0.9;

def maxH = h * 0.9;

def imgView:ImageView = ImageView{

 preserveRatio:true

 fitWidth: maxW fitHeight:maxH

 layoutX:(w-maxW)/2 layoutY:(h-maxH)/2

};

function loadImg(){

 imgView.image = Image{

 url:(scene.lookup("addr") as TextBox).text

 backgroundLoading:true

 placeholder:Image{url:"{__DIR__}loading.jpg"}

 }

}

def addrBar = Group{

 layoutX: 20

 layoutY: 20

 content:HBox {

 nodeVPos:VPos.CENTER

 spacing:7

 content:[

 Label{text:"Image URL:" textFill:Color.SILVER}

 TextBox{id:"addr" columns:80 promptText:"http://"

 action:function(){loadImg()}

 }

Chapter 5

161

 Button{id:"btnGo" text:"Get Image"

 action:function(){loadImg()}

 }

]

 }

}

When the variables imgView and addrBar are placed on the scene and the application is
executed, you will get the results as shown in the following screenshot:

The image shown in this screenshot is licensed under creative common. For additional
information and licensing details, go to http://www.flickr.com/photos/
motleypixel/2905493571/sizes/m/.

How it works...
Loading and displaying images in JavaFX involves two classes, Image and ImageView. While
class Image is responsible for accessing and managing the binary stream of the image,
ImageView, on the other hand, is of the type Node and is responsible for displaying the loaded
image on the scene. The code presented in this recipe lets the user enter a URL for an image
and loads the image on the screen. Let's take a closer look at the code and how it works:

 f The ImageView—the irst signiicant item to notice is the declaration of an
ImageView instance assigned to the variable imgView. This is the component that
will display the image on the scene when it is fully loaded. We specify the properties
fitWidth, fitHeight, and preserveRatio. These properties will cause
imgView to stretch (if the image is smaller than speciied) or shrink (if the image is
larger than speciied) while preserving the aspect ratio of the image.

 f Image URL bar—the form that captures the URL of the image to load is grouped in
the Group instance variable addrBar. The form consists of a Label, a TextBox,
and a Button instance. The TextBox instance has several properties set, including
id="addr", which allows us to ind a reference to it in the code. Both the TextBox
and the Button instances have their action properties deined as a function that
invokes function loadImg(). Therefore, when the TextBox has focus and the Enter
key is pressed, or when the Button instance is clicked on, the image will be loaded.

JavaFX Media

162

 f Loading the image—the image is loaded by calling the function loadImg(). It
assigns an instance of Image to imgView.image. For the Image.url property,
we use the Scene.lookup(id:String) function to retrieve an instance of the
TextBox using its id of addr. For images that may take a while to load, we set
up the following two properties:

 � To ensure that the application does not hang while the image loads,
the property backgroundLoading:Boolean is set to true. This
causes the GUI to remain responsive while an image loads.

 � The property placeholder:Image is used to specify a local image
to use while the remote image is loading, as shown in the previous
screenshot. For example, we use the local image {__DIR__}
loading.png. It gets loaded immediately and remains on the
screen while the remote image loads. When the remote image is
loaded, it replaces the placeholder image.

There's more...

Format support
As of version 1.2, JavaFX has inherent supports for the most popular image formats
(popularity here = web-supported), which includes PNG, JPG, BMP, and GIF. If you have
requirements for formats other than these, such as TIFF for instance, you will have to take
matters into your own hands and use external image libraries such as Java­Advanced­
Imaging (JAI) API (not covered here).

Asynchronous loading issues
As mentioned in the previous section, when you are loading images from locations with high
latency (over the network for instance), you can use the asynchronous background-loading
option for your image. This causes the image-loading operation to occur in a separate
execution thread to keep your GUI responsive.

This, however, presents an issue, whereby if you want to determine the dimensions of the
image (which is available only after the image is fully downloaded), it will report zero when
loading asynchronously, as shown in the next segment:

def img = Image{
 url:"http://someimage.com/img.png"
 backgroundLoading:true
}//does not wait here, it continues to next line

println (img.width); // prints 0

This is because the image is still being downloaded on the Image thread, and the main GUI
thread did not wait for completion and continues with its execution. Therefore, when we query
the property width of Image, it will be zero.

Chapter 5

163

Unfortunately in version 1.2, the Image class does not offer event notiication functions
to know when image is done loading. If your code relies on the actual size of the image to
be known, you must block with asynchronous loading (by setting backgroundLoading =
false) to wait for the image to download and get the size. Another way around is to specify
the size of the image yourself by specifying the dimensions (see next sub-section on Image
resize and aspect ratio).

Image resize and aspect ratio
Another feature supported by Image and ImageView is the automatic resizing of the image.
The Image class will attempt to resize the image when a value is provided for the properties.
width:Number or height:Number. ImageView will attempt to do the same when the
properties fitWidth:Number and fitHeight:Number are speciied. Both classes support
property preserveRation:Boolean, which forces the resize operation to maintain the
aspect ratio of the original image while resizing to the speciied dimensions as shown next:

def imgView:ImageView = ImageView{

 preserveRatio:true

 fitWidth: 200

};

The previous code will resize the image to a width of 200 pixels. Because the preserveRatio
property is true, the height of the image is automatically calculated. This is useful especially if
you do not know the actual size of the image ahead of time (see previous section).

See also
 f Chapter 4—Creating a form with JavaFX controls

 f Introduction

 f Accessing media assets

Applying effects and transformations
to images

Now that you have learned how to load images, what can you do with them? Well, since
ImageView is an instance of the Node class, your loaded images can receive the same
treatment you would ordinarily provide, shapes, for example. In this recipe, we are going to
extend the example from the previous recipe, Loading and displaying images with ImageView,
to add image manipulation functionalities.

JavaFX Media

164

Getting ready
In this recipe, we are going to reach back to some of the concepts learned in previous
chapters to extend the image browser example presented in the previous recipe. We will make
use of JavaFX GUI controls and node effects. If you are not familiar with either of these topics,
please review the recipes from Chapter 3, Transformations, Animations, and Effects, and
Chapter 4, Components and Skinning.

The example presented here extends the image browser from the previous recipe to add
image manipulation capabilities. The new version adds GUI controls to scale, rotate, add
effects, and animate the loaded image.

How to do it...
The code snippet presented next has been abbreviated to concentrate on the more interesting
aspects of the code. You can access the full code listing from ch05/source-code/src/
image/ImageBrowserExtendedDemo.fx.

def w = 800;

def h = 600;

def maxW = w * 0.7;

def maxH = h * 0.7;

var scene:Scene;

def slider = Slider{min:1 max:1.5 value:1}

def imgView:ImageView = ImageView{

 preserveRatio:true

 fitWidth:bind if((slider.value*maxW) < w)

 maxW * slider.value else w

 fitHeight:bind if((slider.value*maxH) < h)

 maxH * slider.value else h

};

var anim = TranslateTransition{

 fromX:0 toX:w - maxW

 node:imgView repeatCount:TranslateTransition.INDEFINITE

 autoReverse:true

}

var rotateAngle = 0;

... //Address Bar Group and loadImg() function not shown

Chapter 5

165

def footer = Group{

 layoutX: 20

 layoutY: h - 60

 content:HBox {

 spacing: 12

 content:[

 slider,

 Button{text:"Rotate" action:function(){

 rotateAngle = rotateAngle + 90;

 imgView.rotate = rotateAngle;

 }}

 HBox{spacing:7 content:[

 Button{text:"Reflection"

 onMouseClicked:function(e){

 imgView.effect =

 if(imgView.effect == null or

 or not (imgView.effect instanceof

 Reflection))

 Reflection{fraction:0.3 topOffset:0}

 else null

 }}

 ... // Other effects omitted

 Button{text:"Sepia"

 onMouseClicked:function(e){

 imgView.effect = if(imgView.effect == null

 or not (imgView.effect instanceof

 SepiaTone)

)

 SepiaTone{level:0.7}

 else null

 }}

 Button{text:"Animate"

 onMouseClicked:function(e){

 if(not anim.running){

 anim.play();

 }else{

 anim.stop();

 }

 }}

]}

]

 }

}

JavaFX Media

166

When the ImageView, the Slider, and the other GUI controls are added to stage, and the
application is executed, it will look like what is shown in the next screenshot. In it, you can
see the relection effect applied to the image.

How it works...
In the recipe Loading and displaying images with ImageView we have seen how to use the
Image API to load and display local or remote images. This recipe extends the code in that
recipe to not only load the image, but also apply effects and animations to it.

As shown in the previous screenshot, this version of the image browser includes a row of GUI
controls at the bottom of the screen that are used to apply different transformations and
effects to the loaded image. Let's take a closer look at how the code works:

 f Scaling the image—using an instance of the Slider control you can dynamically
grow or shrink the image. To do this, we bind the properties ImageView.fitWidth
and ImageView.fitHeight to Slider.value. This causes the size of the image
to grow or shrink dynamically, while maintaining proper image aspect ratio. The
bound expression includes logic to ensure that the image does not grow excessively
large when it is scaled up as shown below:
ImageView{

 fitWidth:bind if((slider.value*maxW) < w)

 maxW * slider.value else w

 fitHeight:bind if((slider.value*maxH) < h)

 maxH * slider.value else h

};

Chapter 5

167

 f Image rotation—the Button instance with the label "Rotate" rotates the image
instance by 90 degrees with each click by setting the imgView.rotate property.

 f Image effects—the next ive buttons in the code apply effects relected in their
respective names. These buttons apply the Reflection, Glow, GaussianBlur,
Lighting (using a PointLight effect), and SepiaTone effects to the image
(only Relection and Sepia are listed in the code). All buttons work in the same way:
if the effect currently applied to the image is null or the effect is not of the desired
type, then apply the desired effect, otherwise, if the effect is already being applied,
turn it off. This makes the button toggle between its assigned effect.

 f Image animation—the last Button control plays the TranslateTransition
instance assigned to the variable anim. The transition animation moves the image
from side-to-side indeinitely until the button is pressed again to stop the animation.

See also
 f Chapter 3—Transformation, animations, and effects

 f Chapter 4—Components and skinning

 f Loading and displaying images with ImageView

Creating image effects with blending
In the previous recipe, we saw how easy it is to build an application that loads, displays,
and applies effects to images. In this recipe, we are going to explore how to create new
visual effects by blending two separate image sources.

Getting ready
For this recipe, you will need to be familiar with the concepts of loading and displaying images
in your application using the Image API. If necessary, review the recipe Loading and displaying
images with ImageView. Part of the code also uses transition animation to slide the images one
on top of the other. If you need to review topics regarding animation, refer to the recipe Creating
simple animation with the Transition API from Chapter 3, Transformations, Animations, and
Effects. Lastly, the recipe makes use of GUI controls to capture image URLs and action buttons
to apply the effects. If you are not familiar with JavaFX's GUI controls, review the recipe Creating
a form with JavaFX controls from Chapter 4, Components and Skinning.

JavaFX Media

168

How to do it...
The code listing given next is abbreviated to show the essential portions that drive the
application. You can get the full listing of this code from ch05/source-code/src/image/
ImageBlendDemo.fx.

var scene:Scene;

def w = 800; def h = 600;

def maxW = w * 0.4; def maxH = h * 0.5;

def img1 = ImageView{

 translateX:10 translateY:10

 preserveRatio:true

 fitWidth:maxW fitHeight:maxH

}

def img2 = ImageView{

 translateX:w – maxW translateY:10

 preserveRatio:true

 fitWidth:maxW fitHeight:maxH

}

def imgPanel = Group {content:[img1, img2]}

def anim = Timeline {

 keyFrames: [

 KeyFrame{time:1s

 values: [

 img1.translateX => (w - img1.fitWidth)/2

]

 }

 KeyFrame{time:1s

 values: [

 img2.translateX => (w - img2.fitWidth)/2

]

 }

]

}

// fn to load img

function loadImg(view:ImageView,url:String){

 view.effect = null;

 view.image = Image{

 backgroundLoading:true

 url:url

 }

Chapter 5

169

}

// controls bottom of screen

def toggleGrp = ToggleGroup{}

def controls = Group{

 layoutY: h - 200

 content:[

 VBox{width:w spacing:12

 hpos:HPos.CENTER nodeHPos:HPos.CENTER content:[

 TextBox{id:"addr1" columns:60 promptText:"http://"

 action:function(){

 loadImg(img1,

 (scene.lookup("addr1") as TextBox).text)

 }}

 TextBox{id:"addr2" columns:60 promptText:"http://"

 action:function(){

 loadImg(img2,

 (scene.lookup("addr2") as TextBox).text)

 }}

 HBox{

 content:[

 RadioButton{text:"ADD"

 toggleGroup:toggleGrp selected:true

 }

 ... // other blending modes omitted

 RadioButton{text:"LIGHTEN"

 toggleGroup:toggleGrp

 }

]

 }

 HBox{

 content:[

 RadioButton{text:"MULTIPLY"

 toggleGroup:toggleGrp

 }

 ... //other blending modes omitted

 RadioButton{text:"SRC_OVER"

 toggleGroup:toggleGrp

 }

]

 }

 Button{

 text:"Blend Images"

 font:Font.font("Sans Serif",

JavaFX Media

170

 FontWeight.BOLD, 18)

 effect:DropShadow{offsetX:3 offsetY:3}

 onMouseClicked:function(e){

 def mode = toggleGrp.selectedButton.text;

 imgPanel.blendMode = BlendMode.valueOf(mode);

 anim.rate = 1.0;

 anim.playFromStart();

 }

 onMouseReleased:function(e){

 anim.rate = -1.0;

 anim.play();

 }

 }

]}

]

}

When the Group instances imgPanel and controls are placed on the stage, and the
application is executed, it produces the next screenshot. The application lets users enter the
URLs of two images and select a blend mode. When the Blend­Images button is pressed, the
images slide to overlap each other and apply the blend effect:

Chapter 5

171

How it works...
The Group class (a node itself) allows the grouping of two or more nodes to be placed on the
scene graph. One of the features of the Group node is its ability to apply a blending algorithm
to the group's members. It applies its algorithm to all children in its content property when a
blend mode is provided through the blendMode:BlendMode property.

In the previous sample code provided, we use Group instance imgPanel to apply blending
effects to two images placed in the group. Let's take a closer look at how the application works:

 f The images—the irst thing we do in the code is to declare two instances of
ImageView, img1 and img2. To ensure that the images it in a pre-determined
dimension on the screen, we set the properties fitWidth and fitHeight on the
two instances. Then, we place the two images in a Group instance called imgPanel,
where they will receive blending effects.

 f The image animation—to make things a little interesting, the code uses an instance
of Timeline to animate the two images. The irst KeyFrame instance slides img1
from the left-hand side to the middle of the screen, and the second KeyFrame
instance slides img2 from the right-hand side to the middle of the screen. The two
images stack up in the middle of the screen where you can see the selected blending
effect applied.

 f Loading the images—when the user types the URL location of the images in the
TextBox instances, with property id="addr1" and id="addr2", and presses
Enter, this invokes the function loadImg(). That function loads and attaches the
loaded image to instances of ImageView img1 and img2, respectively.

 f Applying the blend—Group variable controls contains two rows of RadioButton
instances (not all shown in previous code). For each instance of RadioButton, the
code assigns the name of a BlendMode as its text content (that is, "ADD", "COLOR_
BURN", "MULTIPLY", and so on). When the user clicks on the button titled Blend­
Image, it creates a BlendMode object using the text of the selected radio button,
and applies it to the imgPanel Group containing the images, as shown:

def mode = toggleGrp.selectedButton.text;

imgPanel.blendMode = BlendMode.valueOf(mode);

BlendMode.valueOf(:String) returns an instance of BlendMode based on
a String.

JavaFX Media

172

There's more...
JavaFX supports a multitude of blending options. The following table shows a list of the more
interesting modes:

BlendMode.ADD—adds the color value of the
top image to the bottom

BlendMode.DARKEN—the darker color values of
the child images are displayed

BlendMode.DIFFERENCE—the darker color
values are subtracted from the lighter colors

BlendMode.LIGHTEN—the lighter color values of
the child images are displayed

BlendMode.MULTIPLY—the color values of the
child images are multiplied together

BlendMode.SCREEN—the color values for the
child images inverted, multiplied, and inverted
again

BlendMode.OVERLAY—the color values can
have the screen or multiplication mode applied
to them depending on the bottom input

BlendMode.COLOR_BURN—the color values of
the bottom layer are divided by that of the top
and then inverted

The BlendedMode class offers more blended modes, including RED, GREEN, BLUE, COLOR_
DOGE, HARD_LIGHT, SOFT_LIGHT, SRC_ATOP, SRC_IN, SRC_OUT, and SRC_OVER.

See also
 f Chapter 3—Creating simple animation with the transition API

 f Chapter 4—Creating a form with JavaFX controls

 f Loading and displaying images with ImageView

Playing audio with MediaPlayer
Playing audio is another important aspect of any rich client platform. One of the celebrated
features of JavaFX is its ability to easily playback audio content. This recipe shows you how to
create code that plays back audio resources using the MediaPlayer class.

Getting ready
This recipe uses classes from the Media API located in the javafx.scene.media package.
As you will see in our example, using this API you are able to load, conigure, and playback
audio using the classes Media and MediaPlayer. For this recipe, we will build a simple
audio player to illustrate the concepts presented here. Instead of using standard GUI controls,
we will use button icons loaded as images. If you are not familiar with the concept of loading
images, review the recipe Loading and displaying images with ImageView in this chapter.

Chapter 5

173

In this example we will use a JavaFX podcast from Oracle Technology Network TechCast series
where Nandini Ramani discusses JavaFX. The stream can be found at http://streaming.
oracle.com/ebn/podcasts/media/8576726_Nandini_Ramani_030210.mp3.

How to do it...
The code given next has been shortened to illustrate the essential portions involved in loading
and playing an audio stream. You can get the full listing of the code in this recipe from ch05/
source-code/src/media/AudioPlayerDemo.fx

def w = 400;

def h = 200;

var scene:Scene;

def mediaSource = "http://streaming.oracle.com/ebn/podcasts/media/

 8576726_Nandini_Ramani_030210.mp3";

def player = MediaPlayer {media:Media{source:mediaSource}}

def controls = Group {

 layoutX:(w-110)/2

 layoutY:(h-50)/2

 effect:Reflection{

 fraction:0.4 bottomOpacity:0.1 topOffset:3

 }

 content:[

 HBox{spacing:10 content:[

 ImageView{id:"playCtrl"

 image:Image{url:"{__DIR__}play-large.png"}

 onMouseClicked:function(e:MouseEvent){

 def playCtrl = e.source as ImageView;

 if(not(player.status == player.PLAYING)){

 playCtrl.image =

 Image{url:"{__DIR__}pause-large.png"}

 player.play();

 }else if(player.status == player.PLAYING){

 playCtrl.image =

 Image{url:"{__DIR__}play-large.png"}

 player.pause();

 }

 }

 }

 ImageView{id:"stopCtrl"

 image:Image{url:"{__DIR__}stop-large.png"}

 onMouseClicked:function(e){

JavaFX Media

174

 def playCtrl = e.source as ImageView;

 if(player.status == player.PLAYING){

 playCtrl.image =

 Image{url:"{__DIR__}play-large.png"}

 player.stop();

 }

 }

 }

]}

]

}

When the variable controls is added to a scene object and the application is executed, it
produces the screen shown in the following screenshot:

How it works...
The Media API is comprised of several components which, when put together, provides the
mechanism to stream and playback the audio source. To playback audio requires two classes,
including Media and MediaPlayer. Let's take a look at how these classes are used to
playback audio in the previous example.

 f The MediaPlayer—the irst signiicant item in the code is the declaration and
initialization of a MediaPlayer instance assigned to the variable player. To load
the audio ile, we assign an instance of Media to player.media. The Media class
is used to specify the location of the audio. In our example, it is a URL that points to
an MP3 ile.

 f The controls—the play, pause, and stop buttons are grouped in the Group object
called controls. They are made of three separate image iles: play-large.
png, pause-large.png, and stop-large.png, loaded by two instances of the
ImageView class. The ImageView objects serve to display the control icons and to
control the playback of the audio:

 � When the application starts, imgView displays image play-
large.png. When the user clicks on the image, it invokes its
action-handler function, which irsts detects the status of the
MediaPlayer instance. If it is not playing, it starts playback of the

Chapter 5

175

audio source by calling player.play() and replaces the play-
large.png with the image pause-large.png. If, however, audio
is currently playing, then the audio is stopped and the image is
replaced back with play-large.png.

 � The other ImageView instance loads the stop-large.png icon.
When the user clicks on it, it calls its action-handler to irst stop
the audio playback by calling player.stop(). Then it toggles
the image for the "play" button back to icon play-large.png.

As mentioned in the introduction, JavaFX will play the MP3 ile format on
any platform where the JavaFX format is supported. Anything other than
MP3 must be supported natively by the OS's media engine where the ile is
played back. For instance, on my Mac OS, I can play MPEG-4, because it is a
supported playback format by the OS's QuickTime engine.

There's more...
The Media class models the audio stream. It exposes properties to conigure the location,
resolves dimensions of the medium (if available; in the case of audio, that information is not
available), and provides tracks and metadata about the resource to be played.

The MediaPlayer class itself is a controller class responsible for controlling playback of
the medium by offering control functions such as play(), pause(), and stop(). It also
exposes valuable playback data including current position, volume level, and status. We will
use these additional functions and properties to extend our playback capabilities in the recipe
Controlling media playback in this chapter.

See also
 f Accessing media assets

 f Loading and displaying images with ImageView

Playing video with MediaView
The previous recipe shows you how to play audio using the JavaFX Media API. This recipe
builds on the versatility of the Media API and extends the previous recipe, Playing audio with
MediaPlayer, and creates a video player with a few changes to the code.

JavaFX Media

176

Getting ready
This recipe uses classes from the Media API located in the javafx.scene.media package.
As mentioned in the introduction of this recipe, the example presented here extends the code
from the previous recipe to transform the audio player to now play video. We are going to
reuse the same icons and the same logic to control the playback of the video. To review how
to conigure and use the Media API for playback, review the previous recipe Playing audio
with MediaPlayer.

To illustrate video playback, the application plays back the award-winning, open-sourced,
short, animated movie Big Buck Bunny. By default, the recipe will play the 854 x 480
H.264 version found at the address http://mirror.bigbuckbunny.de/peach/
bigbuckbunny_movies/big_buck_bunny_480p_h264.mov.

How to do it...
Similar to audio, playing video is simple. The abbreviated code given next highlights the
portion of the code that is changed to be able to display video. You can see the full listing
of the code at ch05/source-code/src/media/VideoPlayerDemo.fx.

def w = 800;

def h = 600;

def maxW = w * 0.8;

def maxH = h * 0.7;

var scene:Scene;

def mediaSource =
"http://mirror.bigbuckbunny.de/peach/bigbuckbunny_movies/big_buck_
bunny_480p_h264.mov";

def player = MediaView{

 layoutX:(w - maxW)/2 layoutY:(h-maxH)/2

 mediaPlayer:MediaPlayer {media:Media{source:mediaSource}}

 fitWidth:maxW fitHeight:maxH

}

def controls = Group {

 layoutX:(w-110)/2

 layoutY:h-100

 effect:Reflection{

 fraction:0.4 bottomOpacity:0.1 topOffset:3}

 content:[

 HBox{spacing:10 content:[

 ImageView{id:"playCtrl"

 image:Image{url:"{__DIR__}play-large.png"}

 onMouseClicked:function(e:MouseEvent){

 def playCtrl = e.source as ImageView;

Chapter 5

177

 if(not(player.mediaPlayer.status ==

 MediaPlayer.PLAYING)){

 playCtrl.image = Image{

 url:"{__DIR__}pause-large.png"

 }

 player.mediaPlayer.play();

 }else if(player.mediaPlayer.status ==

 MediaPlayer.PLAYING){

 playCtrl.image = Image{

 url:"{__DIR__}play-large.png"

 }

 player.mediaPlayer.pause();

 }

 }

 }

 ImageView{id:"stopCtrl"

 image:Image{url:"{__DIR__}stop-large.png"}

 onMouseClicked:function(e:MouseEvent){

 def playCtrl = e.source as ImageView;

 if(player.mediaPlayer.status ==

 MediaPlayer.PLAYING){

 playCtrl.image = Image{

 url:"{__DIR__}play-large.png"

 }

 player.mediaPlayer.stop();

 }

 }

 }

]}

]

}

When the Group variable controls and the MediaView instance's player are placed on
the scene, the application will create a window as shown in the next screenshot.

JavaFX Media

178

How it works...
While playing audio only requires the use of the classes Media and MediaPlayer, playing
video requires an additional class called the MediaView. It is of type Node and can be used
to display the content of a video on the screen. Let's take a closer look at the code:

 f The MediaView—the irst major component to be initialized is the MediaView
assigned to variable player. The code uses the MediaView instance to conigure
the dimensions and the location where the video will be rendered. In order to control
playback, the code assigns the player.mediaPlayer property an instance of
MediaPlayer, used to control playback. MediaPlayer is then assigned an instance
of Media (through the property MediaPlayer.media) to specify the location of the
video resource we want to playback.

 f The controls—the GUI controls in this example work the exact same way as described
in Playing audio with MediaPlayer. We use a group of image icons to represent
playback functions play, pause, and stop. When the play icon is pressed, it is starts
playing the video by calling the player.mediaPlayer.play() function and
toggles itself to the pause icon. When the pause icon is pressed, it pauses the video
using function player.mediaPlayer.pause(). Finally, when the user presses the
stop button, it makes a call to player.mediaPlayer.stop() to stop playback and
toggles the play button back to the play icon.

There's more...
Processing video is expensive. The JavaFX MediaView class supports properties which can
be used to provide rendering-time hints to maximize playback performance. These Boolean
properties include:

 f compositable:Boolean—if true, other nodes may overlay the MediaView node
using transparency.

 f preserveRatio:Boolean—if true, the aspect ratio of the video is preserved when
the node is resized through the fitWidth or fitHeight property.

 f rotatable:Boolean—when true, it allows the MediaView node to receive rotation
requests through the rotate property.

 f transformable:Boolean—the node will only apply transformations through the
transforms:Transform[] property when this is set to true.

See also
 f Accessing media assets

 f Playing audio with MediaPlayer

Chapter 5

179

Creating a media playback component
The previous two recipes, Playing audio with MediaPlayer and Playing video with MediaView,
show you how to build applications quickly to playback media sources with basic controls,
such as play, pause, and stop. However, the Media API supports more functionalities than
what have been discussed so far. This recipe shows you how to build a custom media
component to playback media sources providing extended functionalities such as fast
forward, reverse, and timing information.

Getting ready
This recipe uses classes from the Media API located in the javafx.scene.media package.
The example presented here extends the code from the previous recipe Playing video with
MediaView to create a playback component. The component will take advantage of the
functionalities and runtime data provided by the Media API to extend the features of the video
player example. Before you continue, ensure that you are familiar with the materials covered
in the recipes Playing audio with MediaPlayer and Playing video with MediaView.

How to do it...
The shortened code given next provides highlights of the more signiicant items involved in
creating the playback component. You can access the full listing of the code from ch05/
source-code/src/media/MediaControllerComponent.fx.

1. Let's deine class MediaController as CustomNode that encapsulates the
playback icons/buttons and control logic:
class MediaController extends CustomNode{

 public var mediaPlayer:MediaPlayer;

 var timestat = bind

 "{%02d mediaPlayer.currentTime.toHours()

 mod 12 as Integer}:"

 "{%02d mediaPlayer.currentTime.toMinutes()

 mod 60 as Integer}:"

 "{%02d mediaPlayer.currentTime.toSeconds()

 mod 60 as Integer}/"

 "{%02d mediaPlayer.media.duration.toHours()

 mod 12 as Integer}:"

 "{%02d mediaPlayer.media.duration.toMinutes()

 mod 60 as Integer}:"

 "{%02d mediaPlayer.media.duration.toSeconds()

 mod 60 as Integer}";

JavaFX Media

180

 // image icons

 def imgReverse = Image{url:"{__DIR__}reverse-small.png"};

 def imgPlay = Image{url:"{__DIR__}play-small.png"};

 def imgPause = Image{url:"{__DIR__}pause-small.png"};

 def imgFfwd = Image{url:"{__DIR__}ffwd-small.png"};

 def imgVolup = Image{url:"{__DIR__}volup-small.png"}

 def imgVolDn = Image{url:"{__DIR__}voldown-small.png"};

 def controls = Group {

 content:[

 HBox{spacing:10 content:[

 // reverse button

 ImageView{id:"reverseCtrl" image:imgReverse

 onMousePressed:function(e:MouseEvent){

 mediaPlayer.currentTime =

 mediaPlayer.currentTime

 - (mediaPlayer.media.duration * 0.01);

 }

 }

 // play button

 ImageView{id:"playCtrl" image:imgPlay

 onMouseClicked:function(e:MouseEvent){

 ... // starts media playback

 }

 }

 // fast forward

 ImageView{id:"ffwdCtrl" image:imgFfwd

 onMousePressed:function(e:MouseEvent){

 mediaPlayer.currentTime =

 mediaPlayer.currentTime

 + (mediaPlayer.media.duration * 0.01);

 }

 }

 // volume up

 ImageView{id:"voldn" image:imgVolDn;

 onMouseClicked:function(e){

 mediaPlayer.volume =

 mediaPlayer.volume - 0.4;

Chapter 5

181

 }

 }

 // volume down

 ImageView{id:"volup" image:imgVolup

 onMouseClicked:function(e){

 mediaPlayer.volume =

 mediaPlayer.volume + 0.4;

 }

 }

]}

 // progress bar

 Line{

 startX:0 startY:40 endX:100 endY:40

 stroke:Color.MAROON

 }

 Circle{

 radius:5

 fill:Color.MAROON

 centerX:bind

 if(mediaPlayer.media.duration > 0ms)

 (mediaPlayer.currentTime /

 mediaPlayer.media.duration)*100

 else 5

 centerY:40

 }

 Text{

 x:105 y:35

 textAlignment:TextAlignment.LEFT

 textOrigin:TextOrigin.TOP

 font:Font.font(“Sans Serif", 10)

 content: bind timestat

 }

]

 }

 override protected function create () : Node {

 return controls

 }

}

JavaFX Media

182

2. The next code segment shows you how to use the MediaController class
deined earlier:

def w = 800;

def h = 600;

def maxW = w * 0.8;

def maxH = h * 0.7;

var scene:Scene;

def mediaSource = "http://mirror.bigbuckbunny.de/peach/bigbuckbun-
ny_movies/big_buck_bunny_480p_h264.mov";

def video = MediaView{

 layoutX:(w - maxW)/2 layoutY:(h-maxH)/2

 mediaPlayer:MediaPlayer {media:Media{source:mediaSource}}

 fitWidth:maxW fitHeight:maxH

}

def controls = MediaController {

 mediaPlayer: video.mediaPlayer

showReflection:true

layoutX: (w - 200)/2 layoutY:video.fitHeight + 50

}

When we place variable video and the instance of MediaController in a scene and
execute the application, we get a screen as shown in the next screenshot:

Chapter 5

183

How it works...
The custom class presented in this recipe implements a CustomNode which encapsulates
the icons and logic for media playback control functions including reverse, play, fast-forward,
volume up, and volume down. The class also provides visual feedback on the length and
current progression of the video playback. Let's take a closer look at the custom class:

 f Textual time progression—before we look at the control functions, we will look at how
the component reports time progression for the playback. The irst item involved in time
progression feedback is the variable timestat (to which a Text object that displays
progression information is bound). timestat is itself bound to several expressions
that return values containing current time and total time of playback, using values from
mediaPlayer.currentTime and mediaPlayer.media.duration. Since time
is reported as a Duration type, we have to pluck out each time subdivision (hour,
minute, seconds) individually using the mod operator. Then, each unit is formatted to
be printed as zero-padded values as shown in the snippet below:
var timestat = bind

 "{%02d mediaPlayer.currentTime.toHours()

 mod 12 as Integer}:"

 "{%02d mediaPlayer.currentTime.toMinutes()

 mod 60 as Integer}:"

...

 f Visual time progression—to provide visual feedback of the progression of the playback,
the media controller uses a custom progress bar composed of a Circle that slides
along a Line instance. The line represents the total duration of the video, and the
location of the circle (along the line) represents the current position of the playhead.
To achieve this, the Circle.centerX property is bound to an expression that returns
a ratio of mediaPlayer.currentTime/mediaPlayer.media.duration. This
ratio is used to normalize the progress bar by multiplying it to the length of the line to
get the current position of the circle, as shown in the snippet below:
Circle{

...

 centerX:bind

 if(mediaPlayer.media.duration > 0ms)

 (mediaPlayer.currentTime /

 mediaPlayer.media.duration)*100

 else 5

 }

JavaFX Media

184

 f The controls—as before, the control buttons consist of image icons displayed by
instances of ImageView. The custom component loads six icons that represent
functionalities such as reverse, play, pause, fast-forward, volume up, and volume down.
The play and pause icons, assigned to ImageView instance with id = "playCtrl",
use the same logic from previous media playback recipes (consult the recipe Playing
audio with MediaPlayer for details). Let's see how the others work:

 � To fast-forward and reverse, we use ImageView instances with
id="reverseCtrl" and id="ffwdCtrl" respectively. When
the user clicks on these icons, the code adds one percent of the
total duration to (or subtracts from) mediaPlayer.currentTime
property. This has the effect of moving the playhead in the desired
direction.

 � To adjust the volume is even simpler. We use instances of
ImageView with id="volup" and id="voldn" to control the
volume. When the user clicks on the icon, it sets mediaPlayer.
volume to the desired ratio. To increase the volume we add 0.4 to
the current volume. To decrease the volume, we subtract 0.4 from
the current volume level.

See also
 f Chapter 2—Create your own custom node

 f Loading and displaying images with ImageView

 f Playing audio with MediaPlayer

 f Playing video with MediaView

6
Working with Data

In this chapter, we will cover the following topics:

 f Saving data locally with the Storage API

 f Accessing remote data with HttpRequest

 f Downloading images with HttpRequest

 f Posting data to remote servers with HttpRequest

 f Uploading iles to servers with HttpRequest

 f Building RESTful clients with the PullParser API

 f Using the feed API to create RSS/Atom clients

 f Visualizing data with the JavaFX Chart API

Introduction
All popular rich client platforms provide inherent support for local and remote data retrieval
and persistence. JavaFX is no different. This chapter explores the tools that are available
in JavaFX to access and manipulate data locally or remotely, and how to perform data
visualization using the newly added JavaFX chart components.

Storage API
Part of the recent additions to version 1.2 of the SDK includes the Storage API. This API
is designed to provide secure and uniform data storage and retrieval services for client
applications working in ofline mode. This chapter shows you how to use the Storage API
to store and retrieve data locally.

Working with Data

186

REST-style development
Part of the main features of a rich client platform is its ability to connect to remote servers in
order to retrieve data. Similar to the popular browser-based XmlHttpRequest object used
to drive AJAX applications, JavaFX exposes the HttpRequest object, which lets developers
connect asynchronously to web servers to exchange data over HTTP. This chapter shows you
how to connect, retrieve data, and handle communication events during different phases of
data exchange. You will also explore how to post data back to the server.

As a modern, rich application platform, JavaFX provides full support for popular data exchange
and data representation formats, such as XML. Out-of-the-box, the JavaFX parser API can
handle pure XML and speciic XML-based formats, such as RSS and Atom. Additionally, JavaFX
developers can leverage the wildly popular JavaScript-based data format named JSON, used
extensively for data exchange on the Web. In this chapter, we look at how to access and parse
XML-encoded and JSON-encoded data to build web-enabled JavaFX applications.

RSS and Atom are two of the most common data feed formats used around the Web for one-way
content syndication. JavaFX provides full support of these formats through its Feed API. Later in
this chapter, we will explore how to use JavaFX in order to build RSS and Atom clients.

Data visualization
In addition to accessing and manipulating data in JavaFX, as of version 1.2, you also have the
ability to visualize your data using the Chart API. Built in JavaFX, you will ind several different
types of chart components, including area, bar, bubble, bar, bar 3D, line, pie, pie 3D, and
scatter chart. This chapter shows you how to create and integrate charting as part of your
JavaFX application.

Saving data locally with the Storage API
Although your JavaFX applications are expected to be able to connect to remote servers in order
to persist or retrieve data, it is, however, also desirable to have the ability to save data locally on
the user's device. Say, for instance, you have deployed a game. You may want to facilitate your
gamers to save game settings, scores, and states locally, without having to connect to a server.
This recipe shows you how to use the Storage API of JavaFX to save data on local devices.

Getting ready
The concepts presented here rely on classes found in the Storage API located in the javafx.
io package. Prior to using the API, it is advisable that you have a working understanding of
the low-level Java IO API classes used for data persistence and retrieval.

Chapter 6

187

How to do it...
To illustrate how to save data locally, the following code snippet creates a simple application
that reads and saves data, a list of US state capitals, locally. For a full listing of the code, refer
to ch06/source-code/src/localstore/StorageDemo.fx.

var storage:Storage;
storage = Storage {
source: "statecaps.txt"
}
var data =
"Alaska:Juneau\n"
"Arizona:Phoenix\n"
"Arkansas:Little Rock\n"

"West Virginia:Charleston\n"
"Wisconsin:Madison\n"
"Wyoming:Cheyenne\n";

var res = storage.resource;
var output= res.openOutputStream(true);
output.write(data.getBytes());
output.close();

// read it and print it
var input = res.openInputStream();
var reader = new BufferedReader(new InputStreamReader(input));
var line:String;
while((line = reader.readLine()) != null) {
 var record = line.split(":");
 println ("Capital of {record[0]} is {record[1]}");
}

How it works...
The Storage API allows developers to store and retrieve data locally on the user's device. In
the previous code snippet, variable data is assigned a list (colon-separated) of United States
capitals. Then, the Storage API's resource object is used to store the data on the user's local
machine and subsequently read back from its stored location.

As mentioned, the Storage API provides two main classes as an abstraction of the local ile system:

 f The Storage class—this is a service class that exposes objects that facilitate the
persistence and retrieval of remove it stored resources. Its property Storage.source
provides reference to a stored resource needed to be accessed. In our example,
Storage.source points to local storage resource "statecaps.txt". All input
or output operations will be done against that resource for the associated instance
of Storage.

Working with Data

188

 f The Resource class—this class represents the stored item. As of version 1.2 of the
SDK, a resource instance is mapped to an actual ile in the user's local ile system.
You can use function resource.openOutputStream() to obtain an instance of
OutputStream to write the data stream locally. The code uses the resource.
openInputStream() function to get a reference to an InputStream object that
is used to read the data from local storage.

As of JavaFX version 1.2.x, the Storage API exposes raw streams, (java.
io.InputStream and java.io.OutputStream) for IO operations.
Unfortunately, there are no JavaFX script syntax or API abstractions of the
java.io.* classes. Therefore, you have to be familiar with low-level
Java IO operations to read or write iles.

There's more...
The Storage class provides several functions to manage the resources in which you may be
interested:

 f list():Object[]—a script-level function that lists all of the resources that can be
accessed (or was created) by this application on the user's local ile system

 f clearAll():Boolean—this function deletes all of the saved resources from the
local device

 f clear():Boolean—this function is used to delete the resource associated with the
instance of the Storage object

The Resource class exposes some useful properties of which you should be aware as well:

 f length:Long—this property returns the size of the resource in bytes
 f maxLength:Long—this is the maximum size that can be stored on a user's local

ile system
 f name:String—the name of the resource at its stored location
 f readable:Boolean/writeable:Boolean—these lags indicate the accessibility

of the resource

Storage organization
When a user accesses your application as an applet, or runs it as a Java Web Start (see
Chapter 7, Deployment and Integration) from the Web, JavaFX allows the application to
store data locally even when the application runs as untrusted. The Storage API creates
a sandbox storage area for each running application. This approach is similar to browser
cookies (amusingly, in JavaFX, it's called a mufin). Each application is given its own, isolated
storage space. By default, an application is reserved 1MB of storage. Total storage with each
resource having a default size of 8KB (these defaults can be conigured; see Local storage
coniguration, ahead).

Chapter 6

189

The storage space for locally saved iles is based on the domain from where the ile was
downloaded from (or the path where the app is executed for non-downloaded app). The
following table shows the default location where a ile will be stored, based on domain path.

Download­Path Local­Storage­Path
http://www.myapp.com/ /
http://www.myapp.com/apps/ /apps
http://www.myapp.com/apps/version1 /apps/version1/
Application executed locally from ile:/Users/
vivien/JavaFX-Cookbook/ch006/

/

When the application stores a resource using the Storage API, it will be saved locally at the
storage space assigned to the application. Applications from the same domain and subpaths
can share stored data. As a measure of security, however, applications from different domains
(or same domain, different paths) cannot share data.

Local storage coniguration
Clients can conigure and control how the Storage API behaves using the storage.
properties ile. As of version 1.2 of the SDK, the ile is located in:

 f %USER_HOME%\Sun\JavaFX\Deployment\storage.properties (Windows)
 f $USER_HOME/.javafx/deployment/storage.properties (*nix, MacOS)

By default, the content of this ile is empty. The following can be used to control storage:

 f storage.enabled = [true | false]—this coniguration entry enables or
disables the storage of a local ile. When set to false, any attempt to write to local
storage will result in an exception.

 f storage.limit.domain—this coniguration entry allows you to conigure the number
of bytes that can be saved manually per application domain (the default is 1MB).

For further information on the Java IO API see:

 f Java IO Tutorial—http://java.sun.com/docs/books/tutorial/essential/
io/

Accessing remote data with HttpRequest
All modern rich client platforms provide ways to communicate with external servers. The Web
and its associated protocols have become de facto technologies for building client-server
applications. This recipe shows how to use JavaFX to communicate with web servers over
HTTP using the HttpRequest object from JavaFX's IO API. You will learn how to submit a
request to a remote web server and use HttpRequest's event-driven callback functions to
handle responses from the server.

Working with Data

190

Getting ready
Prior to getting started with HttpRequest, you should have an understanding of the basic
mechanics behind the Web and its HTTP protocol (see the HTTP reference at the end of
this recipe). JavaFX's HttpRequest class, located in the javafx.io.http package,
provides ways to manage communication between your JavaFX client application and a
remote web server. To illustrate the use of the HttpRequest class, we will use it to pull
down information from Wikipedia's entry about JavaFX programming language at the URL
http://en.wikipedia.org/wiki/JavaFX. In future recipes, you will see how to use
HttpRequest in conjunction with other data-speciic APIs such as RSS. It is also a deinite
plus to be familiar with Java's IO API when working with the HttpRequest API.

How to do it...
The code snippet in this recipe shows you how to use the HttpRequest object to send
a request to a server and handle the response using event-handler functions. The code
segment given next show an abbreviated version of the code. Refer to ch06/source-code/
src/http/HttpRequestGET.fx for a complete listing of the code.

var url = "http://en.wikipedia.org/wiki/JavaFX";

var http = HttpRequest {

 location: url

 method: HttpRequest.GET

 ...

 onInput: function(in: java.io.InputStream) {

 if(in.available() > 0){

 println ("Printing result from {url}");

 var reader:BufferedReader;

 try{

 reader = new BufferedReader(

 new InputStreamReader(in));

 var line;

 while((line = reader.readLine()) != null){

 println(line)

 }

 }finally{

 reader.close();

 in.close();

 }

 }

 }

 ...

}

http.start();

Chapter 6

191

When the code is executed, it retrieves the data and prints it to the standard output stream as
shown in the next screenshot:

How it works...
The HttpRequest object automatically handles all the network steps necessary to create a
connection between your application and a remote web server. Here is what is going on in the
code snippet:

1. The URL—the irst item is the declaration of the URL location. The code sets up the
variable url as the location of the Wikipedia entry that we want to retrieve.

2. Connecting to the server—next, we declare an instance of HttpRequest to handle
the connectivity and manage the data. The location:String property of the
HttpRequest instance is assigned the variable url. The other interesting property
is the HttpRequest.method property, which speciies the HTTP method to use
when interacting with the server. For the recipe's code, we set the HTTP method to
HttpRequest.GET (see There's more, next).

3. Handling the response—inally, we deine event-handler functions for the
HttpRequest instance. These event handlers will get invoked at different
phases of the request/response life cycle. In the code snippet, we are only
showing the onInput event-handler function in detail. This function is invoked
when all the bytes for the requested resource are received from the server. In the
code, the function basically loops through the received bytes from the IO stream
 and prints the data, as shown in the previous screenshot.

Working with Data

192

There's more...
Specifying the location property for HttpRequest can be tricky, especially when
composing URL with non-alphanumeric characters. These characters have to be encoded
using the URL-encoding MIME format. To facilitate this, JavaFX offers the javafx.io.http.
URLConverter class. This utility class provides several methods to convert string values into
URL-encoded format. For instance, to pull down the Wikipedia page for the Java Platform, the
following code snippet can be used:

var conv = URLConverter{};

var topic = conv.encodeString("Java_(programming_language)");

var url = "http://en.wikipedia.org/wiki/{topic}";

An instance of the URLConverter class is used to URL-encode string "Java_
(programming language)", which gets encoded as "Java_%28programming_
language%29". The non-alphanumeric characters are replaced with the "%" followed
by the character's hexadecimal value in the ISO Latin-1 character set (ISO-8859-1).

HTTP methods
The HttpRequest API supports several HTTP methods, through the property
method:String, including GET, POST, PUT, and DELETE. The HttpRequest class will
behave differently, depending on the method set. For instance, GET is intended to retrieve
the speciied resource from the server, while POST is intended to submit data back on the
server to be handled by the identiied resource. You will see the use of both GET and POST
throughout this chapter.

For further information on some of the topics covered see:

•f HTTP—http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

•f Java IO Tutorial—http://java.sun.com/docs/books/tutorial/essential
/io/

See also
 f Saving data locally with the Storage API

Downloading images with HttpRequest
In the previous recipe, Accessing remote data with HttpRequest, we saw how to use the
HttpRequest class to request and receive textual data from a remote server. How about
the next most popular resources on the web: Images? The answer is a resounding yes. In this
recipe, we will see how to pull down image binary data from the server speciically and display
it in your JavaFX application.

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Chapter 6

193

Getting ready
In Chapter 5, JavaFX Media, we learned how to use the Image API to download images
automatically. However, the API offers little control over the download process. In this recipe,
we are going to use HttpRequest, which provides granular control over the content of the
image downloaded. For some portions of the code, you will need to be familiar with the use of
JavaFX data binding and triggers (see Chapter 1, Getting Started with JavaFX for details). For
a background on how to display images in JavaFX, review the recipe Loading and displaying
images with ImageView from Chapter 5, JavaFX Media.

To illustrate the use of HttpRequest, we are going to build a Google Map application.
The application uses the Google Static Map API to download static map images based on
a provided address. The example requires a Google API Key to run. You can get your own
Google API Key at http://code.google.com/apis/maps/signup.html.

How to do it...
The abbreviated version of the code provided next shows the essential portions needed to
show how to pull down an image from Google's map server. The code listing intentionally
leaves out portion of the code used to assemble the GUI components (topics on GUI controls
are covered in Chapter 4, Components and Skinning). Refer to ch06/source-code/src/
http/HttpRequestGoogleMap.fx for a complete listing of the code.

var w = 640;

var h = 480;

var bytesToRead:Long;

var currentBytesRead:Long;

var imgW = w * 0.8;

var imgH = h * 0.7;

var converter = URLConverter{}

var loc = converter.encodeString("Atlanta, GA");

var zoom:Number = 15;

var mapType="roadmap";

def apiKey="PLACE_YOUR_GOOGLE_API_KEY_HERE";

var gmapUrl = bind "http://maps.google.com/maps/api/staticmap?"

 "center={loc}"

 "&zoom={zoom as Integer}"

 "&size={imgW as Integer}x{imgH as Integer}"

 "&maptype={mapType}"

 "&format=png32"

 "&markers=color:blue|{loc}"

 "&sensor=false"

 "&key={apiKey}"

 on replace {

Working with Data

194

 loadMapImage(gmapUrl);

 };

var imgView = ImageView{

 preserveRatio:true

 effect: Reflection{fraction:0.25}

 layoutX:(w – imgW)/2

 layoutY:10

};

function loadMapImage(url:String):Void{

 var http:HttpRequest = HttpRequest {

 location: url;

 onInput: function(is: java.io.InputStream) {

 try {

 if(is.available() > 0) {

 var buffImg = ImageIO.read(is);

 imgView.image = SwingUtils.toFXImage(buffImg);

 }

 } finally {

 is.close();

 }

 }

 ...

 };

 http.start();

}

// code to build the GUI omitted (see full listing)

When the GUI controls are added to the application's scene instance, it produces the Google
Map mashup application shown in the next screenshot:

Chapter 6

195

How it works...
The previous code listing has been trimmed to its bare essentials to show you how to
download binary data of an image from a remote web server. There are two main places
in the code where you should focus your attention:

 f First, let's look at the declaration of the variable gmapUrl. This string composes
the URL, which is sent to the server to retrieve the image data for the map. The
string speciies all of the necessary URL parameters that the Google Map server
is expecting to render and return the image properly (see the Google Map API
documentation for details about expected parameters).

The important portion of the declaration of gmapUrl is the on replace trigger. Any
time that the expression for the URL value changes, the trigger automatically invokes
the loadImage(url) function, which is used to retrieve the binary data from the
server (see next bullet).

 f The loadImage(url) method is responsible for submitting the request to
retrieve the image from the remote web server using the HttpResponse
object. Here again, we provide a callback event-handling function through the
onInput:function(:InputStream) property. This function is invoked when
all of the bytes for the binary resource have been downloaded. In the code, we irst
attempt to detect if the data is available using InputStream.available() > 0;
if so, we generate the image, as follows:

 � The code uses the Java class javax.imageio.ImageIO to
generate an instance of java.awt.image.BufferedImage from
the received InputStream object.

 � Since we can't use BufferedImage directly to display the image,
the code then uses the javafx.ext.Swing.SwingUtils to
convert the buffered image into an instance of javafx.scene.
image.Imge by calling SwingUtils.toFXImage(). The image
is then made visible by assigning it to the ImageView instance,
imgView, through its image property.

The omitted portion of the code is composed of the following GUI control elements:

 f Slider—the slider is used to control the zoom level of the image

 f TextBox—the text box captures the address or location for the map

 f Map button—forces the application to request an illustrated road map

 f Satellite button—requests a map with satellite image overlays

Working with Data

196

If you think this example could have been accomplished by simply using an
instance of Image, you would be correct. However, the approach presented
here gives you total control and access to the life cycle events generated by
the interaction between your application and the server. You do not get this
level of control when using the Image API directly to retrieve an image.

There's more...
You can get more information on the materials presented here:

 f Java Image Tutorial—http://java.sun.com/docs/books/tutorial/2d/
images/

 f Java IO Tutorial—http://java.sun.com/docs/books/tutorial/essential/
io/

 f Google Static Map API—http://code.google.com/apis/maps/
documentation/staticmaps/

See also
 f Chapter 1—Using binding and triggers to update variables

 f Chapter 4—Creating a form with JavaFX controls

 f Chapter 4—Using the Slider control to input numeric values

 f Chapter 5—Loading and displaying images with ImageView

 f Accessing remote data with HttpRequest

Posting data to remote servers with
HttpRequest

In the preceding recipes, we looked at how to get data from a remote web server. You
may also wish to send data collected from your application to a web server for storage,
for instance. Sending data to web servers is the other half of the rich interactions that are
supported between JavaFX applications and remote servers. In this recipe, we explore how
to post data to a web server.

Getting ready
You should have an understanding of the basic mechanics behind the Web and how
HttpRequest interacts with the server to handle the request/response life cycle. You
should also review materials from Chapter 4, Components and Skinning, for information
on building data forms. For this recipe, let's assume that we have a web server running

http://java.sun.com/docs/books/tutorial/2d/images/
http://java.sun.com/docs/books/tutorial/2d/images/
http://java.sun.com/docs/books/tutorial/essential/io/
http://code.google.com/apis/maps/documentation/staticmaps/

Chapter 6

197

an application that can accept the submission of an employee form at the address
http://localhost:8080/webapp/employee/save. In this section, we will see
how to use JavaFX to submit data to a web server using the POST method.

How to do it...
To demonstrate how to use HttpRequest to post data to a web server, we will create a simple
form in JavaFX which submits employee information to a backend web server. To do this, we
will use the POST HTTP method of the HttpRequest object to encode and send information
to the server. The next listing provides a shortened version of the code. You can get the full
version from ch06/source-code/src/http/HttpRequestPOST.fx.

1. The irst portion of the code builds the GUI for the form. We have seen how to build
GUI forms using standard JavaFX controls in Chapter 4, Components and Skinning.
Hence, we won't spend too much time on that:
def w = 400;

def h = 200;

var scene:Scene;

var nameRow = HBox {

 spacing:7

 content:[

 VBox{content:[Label{text:"First
Name"},TextBox{id:"fName"}]}

 VBox{content:[Label{text:"Last
Name"},TextBox{id:"lName"}]}

]

}

...

var btnRow = HBox {

 spacing:7

 content:[

 Button{

 text:"Submit"

 action:function(){

 formData.visible = true;

 postData();

 }

 }

]

}

http://localhost:8080/myapp/saveform

Working with Data

198

2. The second part of the code declares the function postData() to collect the data
from the form's TextBox instances and send it to server:

function postData(){
 var conv = URLConverter{};
 var url = “http://localhost:8080/webapp/employee/save";
 var postData = [
 Pair{name:"firstName" value:(scene.lookup("fName") as
 TextBox).text},
 Pair{name:"lastName" value:{(scene.lookup("lName") as
 TextBox).text}},
 Pair{name:"title" value:(scene.lookup("title") as
 TextBox).text},
 Pair{name:"address" value:(scene.lookup("addr") as
 TextBox).text},
];

 var http = HttpRequest {
 location: url
 method: HttpRequest.POST

 onOutput:function (toServer: OutputStream){
 try {
 var data = conv.encodeParameters(postData);
 toServer.write(data.getBytes());
 }finally{
 toServer.close();
 }
 }
 ...
 }
 http.start();
}

When we put all of the GUI controls in a scene graph and run the application, it posts the data
to the remote server as shown, to be saved in the database as shown in the next screenshot:

Chapter 6

199

How it works...
The HttpRequest object works in similar ways when using the POST method as when
using the GET method: you set up the HttpRequest.location property, then you call the
HttpRequest.start() function to start the interaction between your application and the
server. However, when posting, the data must be properly encoded in ways understood by
the HTTP server. Let's take a look at the function postData():

 f Capture data in pair sequence—each data item from the form to be sent to the server
must be grouped in key/value pairs, where the key is the name of a ield in an HTTP
form and the value is from the TextBox instances. To accomplish this, we place the
data in a sequence of Pair instances. A Pair object is a tuple, where you can store
name-value pairs. We declare variable postData as a sequence of Pair instances
to store values for firstName, lastName, title, and address, respectively, as
shown next:
var postData = [

 Pair{name:"firstName" value:(scene.lookup("fName") as

 TextBox).text},

 Pair{name:"lastName" value:{(scene.lookup("lName") as

 TextBox).text}},

 Pair{name:"title" value:(scene.lookup("title") as

 TextBox).text},

 Pair{name:"address" value:(scene.lookup("addr") as

 TextBox).text},

];

 f Sending data to server—to communicate with the server, we instantiate
HttpRequest and assign it to variable http. Next, the code sets the parameter
location to point to the server that will receive the data. The code also sets
the method property to HttpRequest.POST (instead of GET).

 � The code deines the event-handler function onOutput:function
(:OutputStream) as a callback function that provides access to
an instance of OutputStream assigned to variable toServer. All
values written to that stream will be sent to the server.

 � Before data from the form can be posted to the server, the
sequence of Pair instances must be converted into a format
supported by the web server. The code uses function encodePa
rameters(Pair[]):String from the URLConverter class to
encode the values that will be sent to the server.

Working with Data

200

 � Once the data is prepared in a manner that the web server can
understand (see previous bullet), we attach it to the OutputStream
instance as follows:

var data = conv.encodeParameters(postData);

toServer.write(data.getBytes());

There's more...
For further details, see:

 f Java IO Tutorial—http://java.sun.com/docs/books/tutorial/essential/
io/

See also
 f Chapter 4—Creating a form with JavaFX controls

 f Accessing remote data with HttpRequest

Uploading iles to servers with HttpRequest
When creating fully connected rich client applications, part of the expected standard
functionalities, sometimes, is the ability to exchange iles with the server. We have already
seen how to download an image from the server (see recipe Downloading images with
HttpRequest). In this recipe, we will look at how to use HttpRequest to upload an image
to the server.

Getting ready
The concepts presented here deals with HTTP and the HttpRequest object in JavaFX. You
should already have an understanding of the basic mechanics behind the Web and how
HttpRequest interacts with web servers to handle the request/response life cycle. Refer to
the recipes Accessing remote data with HttpRequest, Downloading images with HttpRequest,
and Posting data to remote servers with HttpRequest, in this chapter, for some background
information on how to use the HttpRequest object to interact with a web server.

For this recipe, we will assume that we have a web server running an application which
can process the submission of a multi-part form for image ile upload running at the
address—http://java.sun.com/docs/books/tutorial/essential/iave. JavaFX's
HttpRequest object does not support ile upload directly (as of version 1.2). However, in
this recipe, we will use common (and publicly available) knowledge about multi-part web
forms to create the low-level data stream required by HTTP for multi-part form submission
for ile upload.

Chapter 6

201

How to do it...
The abbreviated code given next shows you the major components needed to achieve
binary data upload to a remote web server. Refer to ch06/source-code/src/http/
HttpRequestFileUpload.fx for a complete code listing.

1. The irst portion of the code deines class FormPart used to encapsulate the binary
data and the required HTTP multi-part boundary markers that are used to decorate
the data so the server can parse it.
def MARKER = "--";
def CRLF = "\r\n";
def BOUNDARY = "7d226f700d0";
def CONTENT_TYPE = "multipart/form-data; boundary={BOUNDARY}";

class FormPart {
 public-init var name:String;
 public var value:String;
 public var file:File;

 var conv = URLConverter{}
...
 public function writeFileTo(out:OutputStream):Void {
 if(file != null){
 var header = new java.lang.StringBuilder();
 header
 .append(CRLF)
 .append(MARKER)
 .append(BOUNDARY)
 .append(CRLF)
 .append("Content-Disposition: form-data;
 name=\"{name}\";
 filename=\"{file.getAbsolutePath()}\"")
 .append(CRLF)
 .append("Content-Type: application/octet-stream")
 .append(CRLF)
 .append(CRLF);

 // write header to output stream
 out.write(header.toString().getBytes());

 // copy file content to out stream
 var byteRead:Integer;
 var input = new FileInputStream(file);
 try{
 while ((byteRead = input.read()) != -1){
 out.write(byteRead);
 }
 }finally{
 input.close();

Working with Data

202

 }
 }
 }
}

2. The second part of the code utilizes HttpRequest in conjunction with the
FormPart class to send the multi-part form to the the server.

def url = "http://localhost:8080/webapp/upload/save";
def file = new File("image.png");
def fileLen = file.length();

// HttpRequest declaration which uses class FormData
var http:HttpRequest = HttpRequest {
 location: url
 method: HttpRequest.POST
 headers: [
 HttpHeader
 {name:HttpHeader.CONTENT_TYPE value:CONTENT_TYPE},
]

 onOutput:function(out: OutputStream){
 try {
 // write parts
 def filePart = FormPart{name:"file" file:file}
 filePart.writeFileTo(out);

 // close multipart with a footer
 var footer = new java.lang.StringBuilder();
 footer
 .append(CRLF)
 .append(MARKER)
 .append(BOUNDARY)
 .append(MARKER);
 out.write(footer.toString().getBytes());
 }finally{
 out.close();
 }
 }
...
}

http.start();

When this code is executed, it will invoke HttpRequest.start(), which will cause the
content of the ile image.png to be uploaded to the server.

Chapter 6

203

How it works...
As mentioned earlier, as of version 1.2 of the SDK, JavaFX does not currently have a direct
way to upload a ile to a web server using the HttpRequest object. However, in this recipe
we have manually crafted a multi-part form stream at the HTTP protocol level to achieve a ile
upload. Here is how the code snippet works:

 f Firstly, the snippet declares a series of constants (MARKER, CRLF, BOUNDARY, and
CONTENT_TYPE) that are used to construct the multi-part form header and footer
byte sequences.

 f Next, the code deines the utility class FormPart, which exposes a method that
is used to assemble the multi-part form byte stream that is sent to the server. The
function writeToFile(out:java.io.OutputStream) of that class will arrange
the data by laying out the header marker bytes followed by the bytes of the ile being
uploaded into the output stream.

 f The code then declares an instance of HttpRequest, used to communicate with the
server for the ile upload. The code sets the location and the method properties
for the request.

 f HttpRequest.headers—in the HttpRequest declaration, we are providing
header information using the headers property. You can deine one or more request
headers, which will be sent to the server as metadata about the request. In our code,
we send header CONTENT_TYPE to indicate the type of content (multi-part form) the
server should expect.

 f We deine an event-handler function for property HttpRequest.onOutput to write
the outgoing bytes to the server. In it, we do the following:

 � FormPart—we use an instance of FormPart to generate the byte
sequence for the multi-part boundaries and markers needed for
the ile upload header information. Then, the content of the ile is
opened using a FileInputStream instance, whose binary stream
content is written to OutputStream being set to the server through
the out.write(byte[]) call.

 � footer—to close out the stream, the code applies footer markers,
through the variable footer, to signal the end of the multi-part
binary submission to the OutputSream instance.

There's more...
You can read more about the topics discussed here:

 f Multi-Part Message—http://en.wikipedia.org/wiki/MIME

 f Java IO Tutorial—http://java.sun.com/docs/books/tutorial/essential/
io/

Working with Data

204

See also
 f Accessing remote data with HttpRequest

 f Downloading images with HttpRequest

 f Posting data to remote servers with HttpRequest

 f Posting data to servers with HttpRequest

Building RESTful clients with the PullParser
API

Two of the more pervasive formats for information interchange in today's web-enabled
environments are XML and (more recently) JSON (originally stood for JavaScript­Object­
Notation, but has evolved into a general structured data format). These formats have
seen nothing but growing adoptions with the explosion of the programmable web movement.
Companies with content-driven services expose their offerings as platforms to clients of
any types (web-based, desktop, mobile, and so on) to tap into the vast sea of data and
services programmatically.

In this recipe, we will see how you can use JavaFX to process XML and JSON data from remote
servers. To illustrate these capabilities, we will extend the example presented in the previous
recipe Downloading images with HttpRequest, to create a REST-style real estate price
estimator mashup application which uses services from both Google Map and the Zillow Real
Estate engine (http://www.zillow.com).

Getting ready
To understand some of the concepts presented here, you should be familiar with the
HttpRequest class. If not, review the recipe Accessing remote data with HttpRequest
to learn how to request data from web servers. For this recipe, we are going to make web
requests from both the Google Map API and the Zillow API to create the real estate price
estimator mashup. You will also need to be familiar with the mechanics of downloading
images from web servers using JavaFX. If you need to some help, see recipe Downloading
images with HttpRequest.

To process XML or JSON payloads, JavaFX provides the PullParser API, located in the javafx.
data.pull package. The PullParser is a fast, event-driven parser that lets developers quickly
parse document nodes as they are encountered during document download. JavaFX provides
a parser for XML and one for JSON. Both parsers use a common API to make it easy to learn
and use.

Chapter 6

205

To implement or run the code presented in this recipe yourself, you will need to get Google
and Zillow API keys at http://code.google.com/apis/maps/signup.html and
https://www.zillow.com/webservice/Registration.html, respectively.

Prior to jumping into the code, let's review the XML document, which is returned by the Zillow
web service call. Zillow uses a REST-style API, whereby requests are sent to the server as an
HTTP.GET method, and the server responses are returned as an XML document. For our
needs, we will use the GetSearchResults web service to obtain information on a given
location. The service returns an XML payload which looks like the following XML snippet
(only showing used data elements):

<?xml version="1.0" encoding="utf-8" ?>

<SearchResults:searchresults xmlns:SearchResults="http://www.zillow.
com/vstatic/3/static/xsd/SearchResults.xsd">

...

<response>

 <results>

 <result>

 <zpid>48749425</zpid>

 ...

 <address>

 <street>2114 Bigelow Ave N</street>

 <zipcode>98109</zipcode>

 <city>SEATTLE</city>

 <state>WA</state>

 <latitude>47.637934</latitude>

 <longitude>-122.347936</longitude>

 </address>

 <zestimate>

 <amount currency="USD">1241162</amount>

 <last-updated>10/25/2007</last-updated>

 ...

 </zestimate>

 </result>

 </results>

</response>

</SearchResults:searchresults>

http://www.zillow.com/vstatic/3/static/xsd/SearchResults.xsd
http://www.zillow.com/vstatic/3/static/xsd/SearchResults.xsd

Working with Data

206

How to do it...
The code for this recipe is a little long. So, it has been segmented into chunks for easier
readability and comprehension. For the full code listing of this recipe, see the script ile
available at ch06/source-code/src/webservice/ZillowMashupDmo.fx

1. Let us irst declare some constant values and global variables used throughout the
script ile:
def w = 640;

def h = 480;

def imgW = w * 0.7;

def imgH = h * 0.6;

def ZILLOW_WS = "http://www.zillow.com/webservice/Get-
SearchResults.htm";

def ZILLOW_ZID = "PLACE_ZILLOW_KEY_HERE";

def GOOGLE_WS = "http://maps.google.com/maps/api/staticmap";

def GOOGLE_KEY = "PLACE_YOUR_GOOGLE_KEY_HERE";

def DEFAULT_ADDR = createAddress("1600 Pennsylvania Ave, Washing-
ton DC");

def conv = URLConverter{};

var scene:Scene;

var imgView:ImageView;

2. Next, deine two classes that are used as data model to represent addresses and
Zillow listings:
// Address model

class Address {

 public var street:String;

 public var city:String;

 public var state:String;

 public var zip:String;

 override public function toString(){

 return "{street}, "

 "{city} {state} {zip}";

 }

}

// Zillow Listing Model

class ZillowListing extends Address{

Chapter 6

207

 public var zpid:String;

 public var longitude:String;

 public var latitude:String;

 public var zestimate:Number;

 override public function toString(){

 return "[zpid:{zpid}, "

 "long:{longitude}, "

 "lat:{latitude}, "

 "addr:{street}, "

 "{city} {state} {zip},"

 " zestimate:{zestimate}]"

 }

}

3. Function createAddress() is used to create Address object from a
string representation:
// creates an address object from a string

function createAddress(address:String):Address {

 var result = Address{};

 var addrParts = address.split(",");

 result.street = addrParts[0].trim();

 if(sizeof addrParts == 2){

 var subparts = addrParts[1].trim().split("\\s");

 result.city = subparts[0];

 result.state = subparts[1];

 }

 if(sizeof addrParts == 3){

 var subparts = addrParts[1].trim().split("\\s");

 result.city = subparts[0];

 result.state = subparts[1];

 result.zip = addrParts[2];

 }

 result;

}

4. Next, we declare a function getZListing() to set up the code that retrieves and
processes Zillow pricing information for a given address instance:
// stores listing request

def zl = ZillowListing{}

// retrieves the zillow listing for given address

function getZListing(addr:Address){

 def citystatezip = "{addr.city} {addr.state} {addr.zip}";

 var url = bind "{ZILLOW_WS}?zws-id={ZILLOW_ZID}&"

Working with Data

208

 "address={conv.encodeString(addr.street)}&"

 "citystatezip={conv.encodeString(citystatezip)}";

 var parser = PullParser {

 documentType:PullParser.XML

 onEvent: function(event:javafx.data.pull.Event){

 if(event.type == PullParser.END_ELEMENT){

 if(event.qname.name == "zpid"){

 zl.zpid = event.text;

 }

 if(event.qname.name == "longitude"){

 zl.longitude = event.text;

 }

 if(event.qname.name == "latitude"){

 zl.latitude = event.text;

 }

 if(event.qname.name == "street"){

 zl.street = event.text;

 }

 if(event.qname.name == "city"){

 zl.city = event.text;

 }

 if(event.qname.name == "state"){

 zl.state = event.text;

 }

 if(event.qname.name == "zip"){

 zl.zip = event.text;

 }

 if(event.qname.name == "amount"){

 zl.zestimate = Number.parseFloat(event.text);

 }

 }

 }

 }

 var http:HttpRequest = HttpRequest {

 method: HttpRequest.GET

 location : url

 onInput:function(in:java.io.InputStream){

 try{

 parser.input = in;

 parser.parse();

 }finally{

 in.close();

Chapter 6

209

 }

 }

 onDone:function(){

 http.stop();

 }

 }

 http.start();

}

5. The next segment lists function getGMap() which retrieves a static map image for
a given address. This is the same code used in the previous recipe Downloading
images with HttpRequest. So, it will be abbreviated, if you need more details on
how to download images using HttpRequest, see the aforementioned recipe.

function getGMap(addr:Address){

 var loc = "{addr.street}, {addr.city} {addr.state} {addr.
zip}";

 var url = bind "{GOOGLE_WS}?"

 "center={conv.encodeString(loc)}"

 "&zoom=13"

 "&size={imgW as Integer}x{imgH as Integer}"

 "&maptype=map"

 "&format=png32"

 "&markers=color:blue|{conv.encodeString(loc)}"

 "&sensor=false"

 "&key={GOOGLE_KEY}";

 var http:HttpRequest = HttpRequest {

 location: url;

 onInput: function(is: java.io.InputStream) {

 try {

 if(is.available() > 0) {

 var buffImg = ImageIO.read(is);

 imgView.image = SwingUtils.toFXImage(buffImg);

 }

 } finally {

 is.close();

 }

 }

 ...

 };

 http.start();

}

Working with Data

210

The remainder of the code deals with creating the GUI for the application by arranging the
image, the text box, and the button, as shown in the next screenshot. That code has been
omitted as you are trusted to review the respective recipes that deal with GUI creation in
previous chapters.

How it works...
In this recipe, we have built a RESTful mashup rich client application that displays a location
on a Google Map and real estate data for that location using Zillow web service API. The
previous code, snippet shows you how to pull down and parse an XML-encoded document
from a remote web server using the PullParser API. Let's review what is going on in the code:

 f Global values—the irst segment of the code declares global values used throughout
the code including the root URL's for the Google and Zillow services, API keys, a
default address used when the application irst started.

 f Data models—to pass data around in the application, we create classes Address
and ZillowListing as data model. The Address class provides a structured way
to capture address data passed in as parameters to the web service requests. The
ZillowListing class models the information returned by the Zillow web service.
ZillowListing extends the Address class because the listing information from
Zillow contains address data as well.

Convenience function createAddress(:String):Address creates an Address
object from a String value. This is valuable since both web services parameterize
the address information differently. The Address class provides a normalized view
of the address around the application.

Chapter 6

211

 f Getting Zillow listings—the third segment of the code shows the deinition of the
function getZListing(:Address). As you may expect, this function retrieves the
Zillow listing based on the address parameters passed to the service. Here is what is
going on inside the function:

 � First, we deined the URL string to the Zillow service. To keep things
simple, we use the global constants deined earlier to concatenate the
web service location, the Zillow API ID, and the address parameters.

 � Next, we instantiate a PullParser instance assigned to the
variable parser. JavaFX's PullParser is an event-based parser,
where an event cursor moves past the document as it is streamed
from its source. Each node of the document raises an event (see
There's more next) that is handled by the event-handler function
attached to property onEvent of the parser.

In the code, the onEvent function takes a simplistic approach to processing
the node events. Basically, at the end of each element, detected with
if(event.type == PullParser.END_ELEMENT), the code tests all
expected element values and grabs the element that matches the expected
name using a chain of if expressions.

 � The next portion of the getZListing(:Address) function
is the declaration of a HttpRequest instance assigned to the
variable http. This is used to communicate with the server and
retrieve the XML document. The event-handler function assigned
to the http.onInput property connects the XML document's
InputStream to the PullParser.in property. The code then
calls the PullParser.parse() function to kickoff the parsing of
the document.

 f Getting the Google Map image—retrieving the Google Map image is done by
the function getGMap(:Address). It uses the same technique covered in the
recipe Downloading images with HttpRequest. It uses an instance of HttpRequest
to download the binary data of the image and assign it to an instance of
ImageView.image.

There's more...
JavaFX's PullParser class is designed to handle both XML and JSON structured data
formats. The PullParser API uses a convention based on the Document­Object­Model
(DOM) to identify the nodes in the document. As the parser encounters a document node
during traversal, it generates a pull event and calls a user-deined event handler speciied
through parser property onEvent:function(:javafx.data.pull.Event). Both
XML and JSON documents are handled in the same manner. The following table lists some
common pull events generated by the parser:

Working with Data

212

DOCUMENT_START

DOCUMENT_END

Generated when the beginning and end of the document have
been reached (either XML or JSON)

START_ELEMENT

END_ELEMENT

Generated at the start and end of an XML element (or JSON
object) respectively

TEXT Generated when textual value of an XML element (or of a JSON
object) is encountered

START_VALUE

END_VALUE

Generated when the value of a JSON object has been parsed

START_ARRAY

END_ARRAY

Generates an event when the beginning and end of a JSON array
have been reached, respectively

START_ARRAY_ELEMENT

END_ARRAY_ELEMENT

Generated at the beginning and end of parsing a JSON array
element, respectively

Custom parsing
The other way to use the PullParser API is to do a linear traversal across the document
yourself, using methods to jump forward to speciic locations in the document. To do this, you
make use of the following methods:

forward() Moves the event cursor forward to the next parsing event
forward(level:Integer) Moves the event cursor forward by the given level into the

document
seek(element:Object) Moves the event cursor until the speciied element is

encountered
seek(element:Object,
level:Integer)

Moves the event cursor until the element is found at the
speciied level

Referring back to the XML document from the Zillow request we saw earlier, we can access
the address value with the following code:

var street = parser.seek(QName{name:"address"})

 .forward(2)

 .event.text;

The seek() method jumps to the address node, then skips two elements to get to the value
node of the street address (refer to Getting started for XML structure).

Chapter 6

213

When you are traversing the document manually as shown, it is important
not to call the parse() method. This will cause the parser to move the
event cursor all the way to the end of the document.

For details on some of the topics presented here, refer to:

 f Java IO Tutorial—http://java.sun.com/docs/books/tutorial/essential/
io/

 f XML Document Object Model—http://en.wikipedia.org/wiki/Document_
Object_Model

See also
 f Chapter 4—Creating a form with JavaFX controls

 f Accessing remote data with HttpRequest

 f Downloading images with HttpRequest

Using the Feed API to create RSS/Atom
clients

We have seen in the previous recipes that JavaFX is well-suited to handle XML data. One of
the most pervasive usages of XML is the syndication of data made available through feed
formats, such as the RSS and Atom formats. In this recipe, we explore JavaFX's inherent
support for the RSS syndication format through the Feed API by building a simple weather
reader application using RSS data from Yahoo.

Getting ready
To understand this recipe, you should be familiar with the notion of web content syndication,
or web feeds. If not, have a quick look at http://en.wikipedia.org/wiki/Web_feed
which provides background information about how feeds are used. You should also take a
look at the previous recipe in this chapter, Building RESTful clients with the PullParser API.

In this recipe, we will show you how to parse RSS syndication feeds using JavaFX's RSS
Feed API located in the javafx.data.feed.rss package. For this recipe, you will pull
RSS-encoded weather data from Yahoo's weather services located at http://weather.
yahooapis.com/forecastrss. We will use JavaFX's RSS API to create an application
which displays weather conditions given a zip code. Unlike the other recipes presented
earlier, you will not need an API key for this example.

Working with Data

214

How to do it...
The shortened code provided next shows how to retrieve and process RSS data using the
Feed API. The omitted portion of the code deals with building the GUI elements, with which
you should already be familiar. You can get the complete listing of the code from ch06/
source-code/src/webservice/YahooWeaherRSS.fx.

// weather data model

class Weather {

 public var image:Image;

 public var title:String;

 public var city:String;

 public var region:String;

 public var country:String;

 public var condition:String;

 public var temp:String;

 public var windSpeed:String;

 public var humidity:String;

 public var visibility:String;

 public var pressure:String;

 public var sunsetTime:String;

 public var sunriseTime:String;

}

var zip = "33167";

var weather = Weather{}; // instance to hold weather info

// function to retrieve weather info based on zip code

function loadWeatherInfo(zip:String):Void {

 var rss:RssTask = RssTask {

 location: "http://weather.yahooapis.com/forecastrss?p={zip}";

...

 //handle Yahoo specific tags

 onForeignEvent:function(event:Event){

 if(event.type == PullParser.END_ELEMENT and

 event.qname.name.equals("location")){

 weather.city=event.getAttributeValue(

 QName{name:"city"});

 weather.region=event.getAttributeValue(

 QName{name:"region"});

 weather.country=event.getAttributeValue(

 QName{name:"country"});

 }

 if(event.type == PullParser.END_ELEMENT and

 event.qname.name.equals("condition")){

 weather.condition =

 event.getAttributeValue("text");

http://weather.yahooapis.com/forecastrss

Chapter 6

215

 weather.temp=event.getAttributeValue("temp");

 // assemble image

 var imgUrl = "http://l.yimg.com/a/i/us/we/52/"

 "{event.getAttributeValue("code")}.gif";

 weather.image = Image{url:imgUrl};

 }

 if(event.type == PullParser.END_ELEMENT and

 event.qname.name.equals("wind")){

 weather.windSpeed=

 event.getAttributeValue("speed")

 }

 if(event.type == PullParser.END_ELEMENT and

 event.qname.name.equals("atmosphere")){

 weather.visibility=

 event.getAttributeValue("visibility");

 weather.pressure =

 event.getAttributeValue("pressure");

 weather.humidity =

 event.getAttributeValue("humidity");

 }

 if(event.type == PullParser.END_ELEMENT and

 event.qname.name.equals("astronomy")){

 weather.sunriseTime =

 event.getAttributeValue("sunrise");

 weather.sunsetTime =

 event.getAttributeValue("sunset");

 }

 }

 ...

 }

 rss.start();

}

When the code is executed, you will get a weather widget, as shown in the next screenshot.

http://l.yimg.com/a/i/us/we/52/
http://l.yimg.com/a/i/us/we/52/

Working with Data

216

How it works...
In this example, the code retrieves weather information from Yahoo Weather as RSS-encoded
data. The steps needed to process RSS feeds are similar to those used in XML processing
(see previous recipe). Let's examine how this is done:

 f Model the weather—the irst item listed is the deinition of class Weather.
It models the weather information that will be transferred from the server.
A script-level instance of Weather is assigned to variable weather, which
will be used to store information extracted from the RSS feed in function
loadRssInfo() (see next bullet).

 f Retrieving RSS data—function loadRssInfo(zip:String) encapsulates the code
necessary to send a request to the feeds server and process the response. To do this,
it declares an instance of RssTask, which is part of JavaFX's Feeds API.

 � RssTask uses the PullParser API internally to process RSS feeds.
Therefore, it is an event-based parser that raises parsing events as
the document is streamed from its source. To use the RssTask, you
irst set the location property to point to the RSS resource that
you want to request. Property onForeignEvent is used to specify
a callback function to handle streaming events used to extract
weather information encoded in non-standard RSS tags, as is done
in the Yahoo Weather format.

The same strategy used when processing XML in the previous recipe is used
here. The code sets up a chain of if expressions designed to test when an expected
element is encountered. When that happens, the code then retrieves the RSS
element's attribute value, as shown in the following code snippet that retrieves
attribute "speed" from element "wind". The retrieved value is then assigned
to the weather object.

if(event.type == PullParser.END_ELEMENT and

 event.qname.name.equals("wind")){

 weather.windSpeed=event.getAttributeValue("speed")

}

Chapter 6

217

There's more...
The Feed API is used to process both RSS and Atom feeds. The API uses an asynchronous
task-based approach to process incoming web feeds. For both types of documents, the API
produces events that are mapped to high-level nodes found in these document types (that
is, Channel in RSS or Entry in Atom). Let's look at how they parse that information.

Handling RSS
To get started with processing RSS data, you need to initiate an instance of the RssTask.
As the internal parser processes the document, the RssTask object produces events for all
high-level nodes as they are encountered during parsing. The following table shows the RSS
document nodes and their associated events produced during parsing:

Node Event­Handler Description
Channel onChannel:

function(:Channel):Void
RssTask calls this function
after the RSS Channel node
is successfully parsed. The
callback function receives an
instance of Channel, which
contains all parsed nodes
under Channel.

Item onItem: function(:Item):Void This function is invoked when
the Item node on the RSS
document is fully realized.
The callback function receives
an instance of Item, which
contains all parsed nodes
under Item.

Extension
Nodes

onForeignEvent:function(:javafx.
data.pull.Event)

This function is called when
non-standard extension
nodes are encountered in
the document. The callback
function receives an instance of
the PullParser's Event class.

The instances of Channel and Item passed into each callback function (respectively) gives
access to all of the additional nodes that make up a standard RSS document (that is: title,
link, description, generator, category, pubDate, guid, and image).

Working with Data

218

Handling Atom
Similar to RSS, to get started with Atom, you must initiate an instance of the AtomTask class.
The AtomTask class produces events for the Feed and Entry high-level nodes as they
are encountered during parsing. The next table describes Atom nodes and the events they
produced during parsing:

Node Event­Handler Description
Feed onChannel: function(:Feed):Void This function is invoked

after the Feed node of the
document is successfully
parsed. The method receives
an instance of Feed, which
contains data for all parsed
sub-nodes.

Entry onItem: function(:Entry):Void This function is invoked after
the Entry node and all of its
child nodes are successfully
parsed. The method receives
an instance of Entry, which
contains data for the parsed
nodes.

Extension Nodes OnForeignEvent:
function(:javafx.data.pull.
Event)

This function is called when
non-standard extension
nodes are encountered in
the document. The callback
function receives an instance
of the PullParser's Event
class.

The instances of Feed and Entry passed into each callback function (respectively) gives
access to all of the additional nodes that make up a standard Atom document (that is: title,
link, author, contributor, description, generator, category, rights, and logo).

Override default parsing behavior
Another feature of the Feed API is the ability to override the way the internal parser handles
the documents. Both RssTask and the AtomTask classes use a Factory class to build
parsed nodes from the document. You can provide your own Factory class to override how the
nodes are parsed from the document. For instance, let's say we want to strip out any HTML
tags embedded in the title of your Atom document. The following steps show you how to do it.

Chapter 6

219

1. The irst step is to create a new Entry class in order to gain access to the processing
of the title node:
class SimpleTitleEntry extends Entry {

 public override function fromXML(parser:PullParser):Void {

 if(parser.event.qname == TITLE and

 parser.event.type == parser.TEXT) {

 title = parser.event.text.replaceAll(

 "<[a-zA-Z\/][^>]*>", "");

 }else{

 super.fromXML(parser);

 }

 }

}

2. Next, deine a new Factory class, which will be responsible for building instances of
the SimpleTitleEntry class during parsing:
class SimpleTitleFactory extends Factory {

 public override function newEntry(feed:Feed):Void {

 SimpleTitleEntry {feed: feed}

 }

}

3. Once your factory is deined, add it to your FeedTask instance as such:

var atom = AtomTask {

 location: "http://youratomlocation.com/file.atom"

 factory: SimpleTitleFactory{}

 ...

}

When the instance of AtomTask parses your document, it will automatically scrub the title of
any extraneous HTML.

Refer to http://en.wikipedia.org/wiki/Web_feed for further information on
web feeds.

See also
 f Chapter 4—Creating a form with JavaFX controls

 f Accessing remote data with HttpRequest

 f Downloading images with HttpRequest

 f Building RESTful clients with the PullParser API

Working with Data

220

Visualizing data with the JavaFX chart API
Up to this point, all of the recipes in this chapter dealt with retrieving, processing, or storing
data. What about visualizing the data? As with other rich client platforms, JavaFX provides a
wealth of data visualization tools in the form of the Chart­API. This recipe shows you how to
use the Chart API to create a visual rendition of your data in the form of charts.

Getting ready
This recipe involves discussion about JavaFX's Chart API located in package javafx.scene.
chart. As of version 1.2 of the platform, the API offers support for more than half a dozen
charts. All charts, however, share a common implementation design, which makes the creation
of all charts a similar exercise. The example presented for this recipe will show you how to create
a bar chart. However, the steps necessary to create other types of charts are similar.

How to do it...
The next code snippet shows you how to create a bar chart in JavaFX. As you will see, it is
simple and straightforward. Refer to ch06/source-code/src/chart/BarChartDemo.fx
for the full listing.

var categories = ["Q32009", "Q32008"];

var dataSeries = [

 BarChart.Series {

 name: "Nokia"

 data: [

 BarChart.Data {category: categories[0] value: 16.1},

 BarChart.Data {category: categories[1] value: 15.4}

]

 },

 BarChart.Series {

 name: "RIM"

 data: [

 BarChart.Data {category: categories[0] value: 8.5},

 BarChart.Data {category: categories[1] value: 5.8}

]

 },

 BarChart.Series {

 name: "Apple"

 data: [

 BarChart.Data {category: categories[0] value: 7},

Chapter 6

221

 BarChart.Data {category: categories[1] value: 4.7}

]

 },

 ... // omitted full list of data series

];

// put bar on stage for display

Stage {

 title: "Gartner Smartphone Sales"

 scene: Scene {

 content: [

 BarChart {

 title: "Gartner Smartphone Sales"

 titleFont: Font { size: 24 }

 categoryAxis:CategoryAxis {

 categories: categories

 }

 valueAxis:NumberAxis{

 label:"Sales (100K)"

 upperBound:20

 lowerBound:0

 }

 data: bind dataSeries

 }

]

 }

}

When the code is executed, it produces the bar chart shown in the next igure:

Working with Data

222

How it works...
As mentioned earlier, creating a chart is easy and straight forward. In this example, we use
data from a Gartner report (see http://www.gartner.com/it/page.jsp?id=1224645)
to display smartphone sales for Q309 versus Q308. The code to produce the chart from
the tabular data provided in the report is deceptively simple. Let's see how the chart
was produced:

 f Categories—irst, the code declares the data categories for the chart. A category
is a broad, logical grouping of related data points. In the code snippet, variable
categories is declared as a sequence of strings representation two categories
"Q32009" and "Q32008".

 f Data series—next, variable dataSeries is assigned a sequence of BarChart.
Series instances. The Series class encapsulates the deinition of one or more
data points on the chart. Each Series instance has a name and contains a
sequence of data points bound to a category (see previous bullet). The Chart API
uses that information to generate each bar in the chart, select a color for the bar,
and automatically generate the legend for the chart.

The last step is to place the generated chart on the stage. The chart automatically sizes itself
to display the data properly. However, you can use the myriad of properties exposed by the
Chart API to customize the look of your charts.

There's more...
Charts from the Chart API can be grouped in two major categories: XYChart, which represents
charts with two-axis charts and PieChart (and its 3D version PieChart3D). As of version 1.2,
XYChart classes can be further grouped as follows:

 f BarChart and BarChart3D

 f LineChart and AreaChart

 f BubbleChart and ScatterChart

Each chart type listed shares similar properties, which makes it easy to switch between them.
For instance, going from BarChart to BarBarChart3D involves a simple class substitution,
which produces a 3D version of the chart, as shown in the following screenshot:

Chapter 6

223

The PieChart class is actually simpler to use than the rest of the charts listed. PieChart
uses a sequence of PieChart.Data to represent the data that will be plotted, where you
provide PieChart.Data.label and PieChart.Data.value properties. Both PieChart
and PieChart3D share the same properties and can be easily switched for one another.

Chart customization
The Chart API makes it easy to customize the look and behavior of your charts. Depending on
the type of the chart you are creating, you have access to an assortment of properties that
you can customize, including the data element's paint, effect, stroke, and node. You also have
the ability to specify interaction behavior by providing an action:function() property for
each data element on the chart using the Data class.

The BarChart class allows you to provide an instance of the Node class for each data item
in the data series. To illustrate how to use this feature, we modify the code from the recipe
(leaving only three data members) and deine a function for the property BarChart.Data.
barCreator as shown in the next code snippet. You can get the entire code listing from
ch06/source-code/src/chart/BarChartCustomDemo.fx.

def width = 640;

def barWidth = (width/6) – 30;

var dataSeries = [

 BarChart.Series {

 name: "Nokia"

 data: [

 BarChart.Data {category: cats[0] value: 16.1},

 BarChart.Data {category: cats[1] value: 15.4}

]

Working with Data

224

 barCreator:function(

 series:Series,

 pos:Integer,

 data:Data):Node{

 ImageView{

 image:Image{

 url:"{__DIR__}nokia.png"

 width:barWidth

 }

 }

 }

 }

 ...

}

The function assigned to barCreator is invoked for each data element in the series as the
chart is rendered. In this version of the code, the function returns an instance of ImageView.
The chart renders an image of a phone instead of the standard bar in the chart, as shown in
the following igure:

data:Data):Node
data:Data):Node

7
Deployment and

Integration

In this chapter, we will cover the following topics:

 f Building and packaging your app with an IDE

 f Building and packaging your app with javafxpackager

 f Packaging your app to get Web Start(ed)

 f Packaging your app as an applet

 f Passing arguments to JavaFX applications

 f Making your applets drag-to-install

 f Controlling JavaFX applets from JavaScript

Introduction
Deployment and integration are critical steps in getting your application to its intended
audience. Regardless of how polished or feature-rich your rich-client application happens to
be, it will be tossed quickly to the side if its users are unable to access and run it with ease
and no fuss. In this chapter, we will look at the many deployment options available to get your
JavaFX applications to your audience.

Deployment and Integration

226

The uniied programming model
The JavaFX application framework supports a uniied programming model. With this
framework, you can write code that scales to target devices ranging from smart phones,
set-top boxes, to entertainment systems, using the same code (with little or no changes).
JavaFX's build and deployment systems determine how to wrap your code to target the
proper runtime environments.

The JavaFX APIs are organized into proiles, which logically group the APIs into subsets of
related functionalities that target one or more runtime environments. As of JavaFX 1.2, the
supported proiles, as shown in the previous igure, include:

 f Common—the APIs in this proile will run in any targeted runtime. Applications that
use only APIs in this proile are guaranteed to be portable across all devices.

 f Desktop—if you want your application to target only the desktop, with the full power
of Java SE behind it, you would target this proile. It includes APIs, such as class
relection, Swing, and anything else supported by Java SE.

 f TV—targeting the TV proile is similar to writing code for the desktop. However, for
guaranteed portability, use the Common APIs as much as possible.

 f Mobile—the mobile proile includes functionalities tied to a mobile environment
with lighter functionalities available.

When you create JavaFX code, the deployment and runtime mechanism is responsible for
determining how to run your application as either an embedded applet within a browser, a
desktop application provisioned from the Web (see recipe Packaging your app to get Web
Start(ed)), or a regular desktop application launched from the command line.

Chapter 7

227

Building and packaging your app with an IDE
Before you can run your application using any of the proiles mentioned in the introduction,
you must build and package it to target that proile. You can build your application using an
IDE or the javafxpackager command-line tool (see the recipe Building and packaging your
app using javafxpackager) that comes with SDK. In this recipe, we are going to explore how to
build your application using NetBeans and Eclipse.

Getting ready
This recipe assumes that you are using either the NetBeans or the Eclipse IDE for your JavaFX
development. If you are not familiar with either of the IDEs, refer to Chapter 1, Getting Started
with JavaFX, for a discussion on how to get started with an IDE for JavaFX development.

How to do it...
Both IDEs (NetBeans and Eclipse) provide support for automatic building and packaging of
your JavaFX applications. You can target different runtime environments supported by JavaFX
right from the IDE.

In NetBeans, you can specify your packaging settings for your application from the project's
properties dialog. Do the following in NetBeans:

1. Right-click on the project in the Projects window and select Properties.

2. Select Run to specify the application's main class.

3. Then, select the targeted execution environment as shown in the next screenshot.

Deployment and Integration

228

Similarly in Eclipse, you can set up your project to assemble and build your applications
automatically to target the desired execution environment automatically. To accomplish
this in Eclipse, do the following:

1. Select Run­Conigurations from the Run menu for your project.

2. Then specify how you want to build your application by selecting the desired proile,
as shown in the next screenshot.

How it works...
Both IDEs support functionalities that allow developers to build and package their applications
to target the different runtimes or proiles supported by JavaFX. As shown in the previous
igures, you have the ability to specify one of the following runtimes as a build setting:

NetBeans Eclipse Setting
Standard­Execution Desktop­proile­-­Run­as­

Application
Select this to deploy your application
to run as a standalone raw jar with the
javafx launcher (see next Launch your
application with the javafx launcher
tool).

Web­Start­Execution Desktop­proile­-­Run­as­
Web­Start

This setting packages the project to run
within the Web Start runtime.

Run­in­Web­Browser Desktop­proile­-­Run­as­
Applet­in­a­web­browser

Select this to deploy your application as
an applet.

Run­in­Mobile­Emulator Mobile­proile­-­Run­in­
Emulator

This setting is used to run an application
within the Mobile runtime.

Run­in­TV­Emulator Not­supported­in­Eclipse­
yet

Use this setting to target the TV runtime.

Chapter 7

229

There's more...
Regardless of the targeted runtime, it is imperative that you specify the main JavaFX script
ile. So for instance, if your application's main entry class is my.package.Main (that is, the
class where the Stage instance or the script-level run() function is declared), then you would
enter the fully-qualiied class name in the space provided in the IDE settings (check out the
preceding two igures). That information will be added to the manifest ile as:

Main-Class: my.package.Main

The runtime container uses this information to determine which class to use to boot up
your application. If you fail to provide that information, your application will not start properly.
If the class you speciied is a code module (whereby it does not have a Stage declared nor
does it have a script-level run() method), nothing will happen when you attempt to run
the application.

See also

 f Chapter 1, Getting Started with JavaFX

Building and packaging your app with
javafxpackager

An IDE makes it easy to build and package your JavaFX application; however, driving the build
process from a command-line interface may be the desirable approach (automated build
comes to mind). In this recipe, we will see how to use the javafxpackager command-line tool
to package and get your desktop application ready for deployment.

Getting ready
You should be familiar with using the command shell. We will assume that you have
properly installed the JavaFX SDK with the JAVAFX_HOME/bin added to your shell's
executable path. If you do not have the JavaFX SDK installed properly, you will not be
able to run the javafxpackager tool. To ensure that you have your environment set up as
expected, from a command prompt type javafxpackager - version, as shown next:

$> javafxpackager - version

$> javafxpackager 1.2.0_b233

You should get the version of the launcher currently installed (similar to the previous listing).
If you get an error, refer to the recipe Installing the JavaFX SDK in Chapter 1, Getting Started
with JavaFX for details on how to properly install the SDK.

Deployment and Integration

230

How to do it...
For this recipe, let's assume the following:

 f You have an application named "cookbook"

 f The root directory for your source code is located in the folder src

 f The main class is located in the package cookbook.app.Main, where script ile
Main.fx is designated as the entry point of the application

To package this application using JavaFX's packager tool, start a command prompt, and type
the following:

javafxpackager -src src -appClass cookbook.app.Main

Upon completion, this command will generate a dist/ directory where all the iles are placed
as shown in the next screenshot.

You will ind the code as described for this recipe in ch07/source-code/src/cookbook.
app.Main.fx. The code is immaterial for this recipe; however, it gives you a starting point to
test the javafxpackager.

How it works...
Although the command issued at the prompt is simple, the JavaFX packager tool does several
import tasks when packaging your application including the following:

 f Java and JavaFX code compilation—the packager tool provides joint compilation
services where it compiles Java source iles and JavaFX script source iles. It
automatically resolves all interdependencies that may exist in the code structure
between Java code and JavaFX code. In our scenario, all compilable code will be
built into Java classes and placed in a temporary location during the build process
to be assembled into a JAR ile.

 f Assemble resources—copies all non-compilable resources (that is, media iles, fonts,
and so on), that are on the source path (or explicitly speciied using a build switch),
for packaging. In the example, all resources found in the source path will be copied
to a temporary build location until they are assembled as a JAR ile.

 f Assemble JAR—this step assembles the compiled class iles and the media resources
into the application's executable JAR ile. For our example, the build process assembles
all compiled resources and non-compiled resources into the Main.jar ile.

Chapter 7

231

 f Generate Web Start ile—creates a JNLP (Java Network Launching Protocol) descriptor
ile that you can use to distribute your application as a Java Web Start(ed) desktop
application. In our example, the build step generates the Main.jnlp ile.

 f Generate browser plugin ile—the packager also generates a *_browser.jnlp
ile, which is used to launch the application as an applet using the new Java Plugin
architecture. For our example, the build step generated browser ile Main_browser.
jnlp.

 f Generate HTML and JavaScript stub—inally, the packager creates a sample HTML
which shows how to embed your application as an applet using JavaScript. In our
example, the packager generated the Main.html ile.

The JNLP coniguration and HTML code generated by the packager tool
is intended to be a starting point. You are expected to edit and customize
the content of these iles to it your deployment needs.

There's more...
The javafxpackager tool supports a myriad of options designed to control how it builds
and packages your application. The following table lists some of the more commonly used
packaging lags:

-proile­|­-p Use this option to specify the target proile for the build. Valid values
include mobile and desktop (default).

-sourcepath­|­-src This required option speciies one or more top-level directories where
project sources are located.

-classpath­|­-cp­
|-librarypath

This is a list of directories, classes, and jars that make up the application's
classpath. Otherwise, the current directory is used as the classpath.

-resourcepath­|­-res Use this option to specify the location of resources which will be
packaged in the resulting jar. If none is speciied, the packager will
search your source path for resources.

-destination­|­-d This option speciies the directory where all generated jar will be placed.
The default is dist.

-appClass This required option speciies the fully-qualiied name of the class to use
as the entry point for the application.

-appName Use this option to specify your application's name. The iles generated by
the packager tool will use the name provided, rather than the name of
the main class.

This is a partial list of the available options, there are many more available for you to
customize your build. You will encounter more of them in other recipes as we explore
the different execution environments.

Deployment and Integration

232

Automating your JavaFX build with Ant
The simplest (and safest) way to integrate the JavaFX build process with your automated Ant
build is to use the exec Ant task to invoke the javafxpackager tool as an out-of-process
task. Assuming that both Ant and JavaFX SDK are installed properly and are a part of the
command shell's execution path, you can invoke the javafxpackager tool to compile the code
mentioned earlier in this recipe using the Ant build below. Refer to ch07/source-code/
fxbuild.xml for the build ile.

<?xml version="1.0" encoding="UTF-8"?>

<project name="JavaFX-Build" default="compile" basedir=".">

 <target name="compile">

 <echo message="Compiling JavaFX"/>

 <exec executable="javafxpackager" failonerror="true">

 <arg value="-src"/>

 <arg value="src"/>

 <arg value="-appClass"/>

 <arg value="cookbook.app.Main"/>

 </exec>

 </target>

</project>

Using the exec Ant task, we are able to invoke the javafxpackager tool and passing
control parameters to it as if it is invoked from the command line. When the Ant build ile
is executed, you get the same result as described in the How to do it section.

The other way to do this is to use the JavaFXAntTask class found in the com.sun.
tools.javafx.ant package. This approach, however, relies on the use of internal,
non-documented Sun's private classes. Although it works today, there is no guarantee
that it will work, or even be supported, later on. Nevertheless, it is there and can be
used to achieve the same result as above.

See also

 f Chapter 1, Getting Started with JavaFX

Packaging your app to be Web Start(ed)
You have couple of options when it comes to distributing your JavaFX desktop applications.
The irst option is to ship your app to your users as raw JAR iles launched from the command
line. While this gives the application full access to local resources. However, it is not oficially
supported (as of version 1.2) and will run the code unmanaged and unable to take advantage
of the deployment services, such as auto-update, JRE detection, and so on.

Chapter 7

233

The preferred option is to facilitate the download and seamless installation and execution of
your application through Java Web Start, a deployment and execution container built on the
Java platform. In this recipe, we will use the JavaFX packager tool to build and package our
application to be distributed using Java Web Start.

Getting ready
This recipe will use the javafxpackager tool to build and package the sample application. If
you are not familiar with javafxpackager, review the previous recipe. If you prefer to use an
IDE for your build and deployment, that is OK. You can still follow along, as both NetBeans
and Eclipse support all the topics covered here.

We will package a sample application named "webstart-demo". We will use the
javafxpackager tool to build the application and generate the Web Start assets,
which we will place on a web server. This will allow us to web-launch and automatically
install our application using Web Start.

How to do it...
We will go through several steps to demonstrate how to build and deploy your application with
Web Start:

1. The irst step is to create a small sample application. You can ind the full code at
ch07/source-code/src/webstart/WebStartDemo.fx:
package webstart.demo;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.text.Text;

import javafx.scene.text.Font;

var msg:Text = Text {

 font : Font {

 size : 72

 embolden: true

 name: "sans-serif,Arial,Helvetica"

 }

 content: "I was Web Started!"

}

msg.translateY = msg.boundsInLocal.height;

Stage {

Deployment and Integration

234

 title: "Application title"

 width: msg.boundsInLocal.width

 height: msg.boundsInLocal.height * 2

 scene: Scene {

 content: [msg]

 }

}

2. Next, we use the javafxpackager tool to build and package the application as
follows (note that the command line is wrapped for readability):
javafxpackager -src src -appClass webstart.WebStartDemo

 -appName webstart-demo

 -appVendor "Vladimir Vivien" -appVersion 1.0

 -appCodebase "http://my.server/path/to/app"

Upon completion, the packager tool will produce the following deployment assets in
default distribution directory dist/, as shown in the next screenshot:

Since we are deploying our application as a Java Web Start, we need to review and
update the application's JNLP ile generated during the packaging process. That
ile contains coniguration settings used by Web Start to run the application. Some
conigurations are based on arguments passed from the javafxpackager command
line. Let's update the title and the description tags:

<?xml version="1.0" encoding="UTF-8"?>

<jnlp spec="1.0+"

 codebase="http://my.server/path/to/app/"

 href="webstart-demo.jnlp">

 <information>

 <title>JavaFX Web Start Demo</title>

 <vendor>Vladimir Vivien</vendor>

 <homepage href="http://my.server/path/to/app"/>

 <description>Run App from Web Start</description>

 <offline-allowed/>

 <shortcut>

 <desktop/>

 </shortcut>

 </information>

 <resources>

Chapter 7

235

 <j2se version="1.5+"/>

 <extension name="JavaFX Runtime"

 href="http://dl.javafx.com/1.2/javafx-rt.jnlp"/>

 <jar href="webstart-demo.jar" main="true"/>

 </resources>

 <application-desc

 main-class="com.sun.javafx.runtime.main.Main">

 <argument>MainJavaFXScript=webstart.demo.Main</argument>

 </application-desc>

 <update check="background">

</jnlp>

3. Lastly, we upload the JNLP ile along with the JAR to the web server location
speciied by the -codeBase argument. Now, you can launch the application from
the Web by pointing your web browser to URL http://my.server/path/to/app/
webstart-demo.jnlp. The following screenshot shows the Web Start runtime
launching the application (from my Amazon S3 location).

To speed up local development, you can launch your JNLP ile from your
local ile system by specifying a local codebase as ile:/path/to/jnlp/app/.
This eliminates the need for a web server upload every time.

After Web Start fully downloads the application on the client's machine, it gets
automatically started using the main class speciied in the coniguration, as shown
in the following screenshot:

Deployment and Integration

236

The previous screenshot shows the Web Start-launched application
running. Notice, however, that since the application is not signed (with
a vendor certiicate), it carries an advisory label located at the upper
right-hand side corner of the window. Future versions of the SDK may
remove this label to provide a less alarmist user experience.

How it works...
We will not discuss the JavaFX code itself here. It is simple and is designed to be used
as an illustrative tool to show you how to build and package your code as Java Web Start
using the javafxpackager tool. As we have seen in the recipe Packaging your app using
javafxpackager, we use the packager's command-line interface to specify several parameters
that were covered in the previous recipe about javafxpackager. However, the following
parameters are worth mentioning:

 f -appVendor—is a descriptive name for the application's vendor that gets displayed
on the default Java Web Start splash screen.

 f -appVersion—is the application's version. Web Start uses this number for
incremental future updates.

The packager tool generates all necessary artifacts required for successful deployment. Upon
close examination of the JNLP ile, we see that the command-line arguments values appear
in the JNLP ile as parameters. In addition, the generated JNLP ile include the following
coniguration parameters that will effect how the application is installed and launched:

 f Ofline option—specifying tag <offline-allowed/> will cause the application to
be cached locally, with the ability to be launched by the Web Start manager, without
requiring subsequent application download with future uses.

 f Shortcut integration—by default, the packager tools turn on desktop integration
through the <shortcut><desktop/><desktop/> tags. This will cause Web
Start to create a shortcut icon on the client's desktop.

 f JavaFX class launcher—the <application-desc/> tag speciies a
Sun-provided class launcher, which loads the JavaFX main class. In our
example, the launcher will launch our application using the main class
speciied by argument MainJavaFXScript=webstart.demo.Main.

There's more...
The Java Web Start technology has been part of the Java landscape for quite a while. Recently,
however, it has become one of the main characters in the JavaFX story. Web Start makes it
easy to deploy your desktop application by providing a uniform mechanism for deploying and
installing applications on the user's local machine. Some of the more prominent features of
Java Web Start include:

Chapter 7

237

 f Uniform deployment—Web Start makes it possible to distribute your desktop
application and its resources using a uniform user experience. Once the application
is packaged for Web Start distribution, it can be deployed wherever the desktop Java
runtime is supported.

 f Browser-based provisioning—with Web Start, applications can be automatically
downloaded and installed using a web browser pointing to a URL. A properly
installed JRE will automatically launch the Web Start runtime when a JNLP ile
is accessed through the browser.

 f Seamless integration—after the initial install, applications are cached locally on the
user's machine. It is possible to have Web Start create a program or launch menu
shortcuts for the supported OS.

 f Automatic update—Web Start will automatically check for updates when the user
starts the application.

 f Security—by default, unsigned applications installed with Web Start are restricted
from accessing local network and ile resources. As part of the application installation
process provided by Web Start, the user can give permission to allow an application
to access those resources.

 f Java Web Start is part of the JRE and requires no additional download from the user.

For further details on Java Web Start, see
http://java.sun.com/javase/technologies/desktop/javawebstart/

See also
 f Building and packaging your app using an IDE

 f Building and packaging your app with javafxpackager

Packaging your app as an applet
The Java applet is a precursor to today's rich internet browser-embedded clients. While the
applet has had its share of challenges, the new Java Plugin architecture, introduced in JDK
1.6u10, was completely rewritten to make applets a viable alternative to Flash and AJAX by
allowing developers to create rich client applications that run on the Java Virtual Machine.
In this recipe, we will see how to build and distribute JavaFX desktop applications as applets
using the tools included in the JavaFX SDK.

Deployment and Integration

238

Getting ready
JavaFX applets are deployed as part of the desktop proile. Therefore, applets are capable of
using the JNLP for Web Start deployments. We will use the javafxpackager tool to generate
deployment artifacts for the sample applet presented in this recipe. If you are not familiar
with javafxpacakger, review the recipe Building and packaging your app with javafxpackager
presented earlier in this chapter. If you prefer to use an IDE for your build and deployment,
then refer to the recipe Building and packaging your app using an IDE from this chapter.

For this recipe, we will package a simple application named "applet-demo." We will use the
javafxpackager tool to build the application and generate the deployment assets, which
are expected to be provisioned from a web server using a web browser.

How to do it...
We will go through several steps to demonstrate how to build and deploy your application as a
JavaFX applet. Again, the code is intentionally kept simple, so that you can concentrate on the
packaging steps necessary to distribute the application as an applet:

1. The irst step is to create your application. Here we have a small application listed
below. Refer to the ile ch07/source-code/src/myapplet/SimpleApplet.fx
for complete code information.
package myapplet;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.text.Text;

import javafx.scene.text.Font;

var msg:Text = Text {

 font : Font {

 size : 52

 embolden: true

 name: "sans-serif,Arial,Helvetica"

 }

 content: "I am Browser-Embedded"

 stroke:Color.WHITE

}

msg.translateY = msg.boundsInLocal.height;

Chapter 7

239

Stage {

 title: "Application title"

 width: msg.boundsInLocal.width

 height: msg.boundsInLocal.height * 2

 scene: Scene {

 fill:Color.BLUE

 content: [msg]

 }

}

2. Next, using the javafxpackager tool, build and package the application using the
following command (note that command has been wrapped for readability):

 javafxpackager -src src -appClass myapplet.SimpleApplet

 -appName applet-demo

 -appVendor "Vladimir Vivien" -appVersion 1.0

 -appCodebase "http://my.server/path/to/app/"

 -appWidth 640 -appHeight 75

Upon completion, the packager tool will produce the following deployment artifacts in
the dist/ directory:

3. Next, open the generated ile applet-demo.html. You can use it as is, modify its
content to it your speciic need, or copy the JavaScript snippet in the HTML ile into
your own ile. Optionally, you can edit the JNLP ile, applet-demo_browser.jnlp, to
tweak the deployment information inside. Chances are, however, you will not need
to (see the recipe Packaging your app to be Web Start(ed) for information about
JNLP ile).

4. Finally, upload the iles applet-demo.jar, applet-demo.html, and applet-demo_
browser.jnpl onto a web server at a location matching the URL speciied by lag
-codeBase in the javafxpackager command line. If these values do not match,
the applet will not work properly.

http://my.server/path/to/app/

Deployment and Integration

240

When the HTML ile is accessed through the web, the browser renders the embedded applet
inside the HTML page as shown in the following screenshot:

If you are running 64-bit Windows 7, you must run your applets in a 64-bit
browser for your applet to run properly.

How it works...
The applet runtime is designed to run Java desktop applications inside the browser. Unlike
traditional desktop applications, applets are rendered directly within the web page using
a frameless window, as shown in the previous screenshot. Users are not able to minimize,
resize, or close the applet while within the browser.

Let's examine how we achieved this in our recipe:

 f The JavaFX code—the code presented in the recipe is purely illustrative. There is
nothing special about it. However, notice that we are not using any applet-speciic
APIs in the code that hints at the targeted environment. That is the power of the
uniied development and deployment model in JavaFX. The developer concentrates
on creating the application and the tool chain handles building the code for the
target environment.

 f The HTML ile—the packager tool generates a sample HTML ile,which shows you
how to use JavaScript to embed the JavaFX applet within the page. The generated
JavaScript does a couple of things:

 � It loads a Sun-provided JavaScript library http://dl.javafx.
com/1.2/dtfx.js that contains the code to bootstrap the applet
within the HTML page.

 � It calls the function javafx(), which takes as parameter an
associative array with coniguration settings, including the JAR
name, applet dimensions, main class, and name of application.

http://dl.javafx.com/1.2/dtfx.js
http://dl.javafx.com/1.2/dtfx.js
http://dl.javafx.com/1.2/dtfx.js
http://dl.javafx.com/1.2/dtfx.js

Chapter 7

241

 f The JNLP ile—this ile is also generated by the packaging step. The JNLP ile contains
descriptors for the deployment of the applet on the Web. It also contains directives
for the applet's runtime, JAR dependency, and, if the applet is installed as a desktop
application using the drag-to-install feature, the JNLP ile contains directives for
desktop behaviors (see Deploying your applet for drag-to-install).

There's more...
The JavaScript library that loads the applet on the page does more than what is listed above.
It also provides the following services:

 f JRE detection—the code will attempt to launch the proper JRE version capable of
supporting the features of the new Java Plugin. It is also possible to detect a speciic
version of the JRE on the client's machine to run the application.

 f Graceful degradation—the JavaScript attempts to gracefully fall back to a version of
the JRE that can still execute the code.

 f Generate HTML tags—the script generates the proper HTML tags (<object>,
<embed>, or <applet>) to embed the code passing in the necessary attributes
and parameters to the tags.

Overriding the JNLP ile name
By default, the bootstrap JavaScript will look for a JNLP ile name {APP_NAME}_browser.
jnlp, where APP_NAME is the application name speciied during the build. However, you can
override the default JNLP ile name in the bootstrap JavaScript as follows:

<script>

 javafx(

 {

 archive: "applet-demo.jar",

 width: 640,

 height: 75,

 code: "applet.demo.Main",

 name: "applet-demo"

 jnlp_href: "myapplet.jnlp"

 }

);

</script>

Using the jnlp_href parameter, you can specify an arbitrary ile name for your applet's JNLP.
Ensure, however, that the href attribute inside the JNLP ile (in the </jnlp> tag) matches
the value speciied with jnlp_ref, otherwise this will fail.

You can ind out more about JNLP and Web Start at http://java.sun.com/javase/
technologies/desktop/javawebstart/.

http://java.sun.com/javase/technologies/desktop/javawebstart/

Deployment and Integration

242

See also
 f Building and packaging your app with an IDE

 f Building and packaging your app with javafxpackager

 f Packaging your app to be Web Start(ed)

Passing arguments to JavaFX applications
Often, it is desirable to pass in parameterized values as arguments to a running application.
In regular Java applications, for instance, this is done by passing arguments through the
command-line when an application is launched. This recipe shows you how to inject both
application parameters and VM-level parameters into a desktop JavaFX application launched
with the Web Start application.

Getting ready
This recipe shows how to pass in both applications and VM arguments to a JNLP-launched
application via the Web Start or the new Java Plugin. If you are not familiar with JNLP, review
the previous recipes Building and packaging your app with javafxpackager, Packaging your
app to Be Web Start(ed), and Packaging your app as an applet.

For this recipe, we will create a simple JavaFX application, which reads a parameter value
passed in as an argument and displays it on stage. Simple, right? Right! Let's see how to do it.

How to do it...
1. To get started, we create a simple application that makes use of runtime parameters.

The application will display a greeting, using a name passed in as a parameter.
The full listing of the code can be found at ch07/source-code/src/params/
RuntimeArgsApplet.fx.
var name = FX.getArgument("name");

var msg:Text = Text {

 font : Font {

 size : 52 embolden: true

 name: "sans-serif,Arial,Helvetica"

 }

 content: bind "Hello {name}!" fill:Color.WHITE

}

msg.translateY = msg.boundsInLocal.height;

Stage {

 title: "Application title"

Chapter 7

243

 width: msg.boundsInLocal.width

 height: msg.boundsInLocal.height * 2

 scene: Scene {

 fill:Color.BLUE content: [msg]

 }

}

2. Next, compile and package the application using the javafxpackager tool (or your
favorite IDE). This will generate the JNLP, JAR ile, and the HTML iles used to deploy
the application as a Web Start or as an applet.

 javafxpackager -src src -appClass params.RuntimeArgsApplet

 -appName args-demo

 -appVendor "Vladimir Vivien" -appVersion 1.0

 -appCodebase "http://my.server/path/to/app/"

 -appWidth 640 -appHeight 75

3. To set the runtime parameter value for the Web Start application, edit the generated
JNLP ile, and add the <argument> tag in the <application> block as shown:
<jnlp>

...

 <application-desc

 main-class="com.sun.javafx.runtime.main.Main">

 <argument>MainJavaFXScript=param.demo.Main</argument>

 <argument>name=World</argument>

 </application-desc>

...

</jnlp>

If you are going to run the application as an applet, you have to set the parameter
from within the bootstrap JavaScript code that launches the applet. Modify the
JavaScript snippet generated during the build/packaging step as follows:

<script>
 javafx(
 {
 archive: "param-demo.jar",
 width: 400,
 height: 100,
 code: "param.demo.Main",
 name: "param-demo"
 },
 {
 name: "World"
 }
);
</script>

http://my.server/path/to/app/

Deployment and Integration

244

When the application is launched as a Web Start app or as browser-embedded applet, we get
the same result, shown in the next screenshot:

How it works...
The JavaFX application framework provides a uniform way to access application arguments.
In the code above, function FX.getParameter(name:String):String is used to look up
an argument by name passed into the application at runtime, either as a Web Start desktop
application or as a browser-embedded applet.

The JavaFX application framework uses a key/value pair to represent the argument passed
into an application at runtime. Let's see how that works:

 f Arguments through Web Start—for Web Start desktop applications, arguments
are speciied in the JNLP descriptor ile. All JavaFX arguments must take the
form of key=value using the <argument/> tag. For our example, we specify
<argument>name=World</argument>.

 f Arguments through Applet—for applets, the Java Plugin reads runtime argument
values from the JavaScript applet bootstrapping code embedded in the HTML. There,
the argument is a {key:value} entry in an associative array passed as the second
argument of the javafx() function (see code above). For our example, we pass in
the argument as {name:"World"}.

There's more...

Accessing all arguments
The JavaFX runtime provides function FX.getArguments():String[], which returns
a sequence of Strings containing the "key=value" strings passed in using the method
described previously.

Command-line arguments
When you run your application from the command line, you can still use the key=value
mechanism to pass in arguments. The following command shows how you would launch
the application packaged in this recipe using the JavaFX command-line launcher with
runtime arguments:

javafx -jar dist/args-demo.jar name="World"

Chapter 7

245

The key=value approach of specifying the command-line argument lets your application
have uniform access to runtime argument values. However, if you know your application will
always be launched from the command-line, outside of Web Start, you should simply access
your parameters using the run(args:String[]) function of your application's main class.

JVM arguments
When using Web Start or an applet, you can specify VM arguments in the JNLP ile. To do this,
locate the tag <j2se/> in the JNLP ile and set the JVM arguments as follows:

<jnlp>

...

 <resources>

 <j2se version="1.5+" java-vm-args="-Xmx256M"/>

 ...

 </resources>

...

</jnlp>

See also
 f Building and packaging your app with javafxpackager

Making your applets drag-to-install
So far, we have seen two ways to get your desktop applications deployed as either
browser-embedded applets or desktop Web Start. However, none is cooler than drag-to-install.
What is that? Well, it is a simple concept: enable the user to drag a running applet from the
web page unto the desktop to install it automatically. In this recipe, we are going to look at
how to create an application that can be deployed using the drag-to-install feature of the new
Java Plugin for browsers.

Getting ready
For this recipe, we will create a simple JavaFX application, which we will build using the
javafxpackager and deploy it as an applet. If you are not familiar with how to do this,
review previous recipe Building and packaging your app with javafxpackager. Discussions
in this recipe will also include topics covered in the recipes Packaging your app to be Web
Start(ed) and Packaging your app as an applet.

Deployment and Integration

246

How to do it...
To illustrate the techniques in this recipe, we will create a simple JavaFX application that
displays the current time and deploy that application as a drag-to-install applet.

1. The irst thing to do is create a simple JavaFX script that uses an instance of the
Timeline class to drive a simple digital clock. The full listing of the code can be
found at ch07/source-code/src/draggable/DraggableApplet.fx.
var currTime = function():String{

 new SimpleDateFormat("hh:mm:ss").format(new Date())

}

var time:String = currTime();

Timeline {

 repeatCount:Timeline.INDEFINITE interpolate:false

 keyFrames: KeyFrame {

 time: 1s

 action:function() {time = currTime()}

 }

}.play();

Stage {

 scene: Scene {

 fill:Color.BLUE

 content: [... //content omitted]

 }

 extensions: [

 AppletStageExtension {

 shouldDragStart: function(e): Boolean {

 return true;

 }

 useDefaultClose: true

 }

]

}

2. Next, we compile and package the code using the javafxpackager. Notice that we
are specifying the -draggable lag:
javafxpackager -src src -appClass draggable.DraggableApplet

 -appName draggable-applet

 -draggable

Chapter 7

247

 -appCodebase "http://my.server/path/to/app/"

 -appWidth 200 -appHeight 75

2. Lastly, deploy draggable-applet.jar, draggable-applet_browser.jnlp,
and draggable-applet.html iles on a web server at the location speciied
by the -codeBase lag in the javafxpackager command line.

Now, notice when the applet is accessed from a browser that it looks as expected.
It is unaltered with no indication that it is draggable, as shown in the next screenshot:

However, when you attempt to drag the applet you are able to move it outside of its original
docked location in the page. You can drag the applet outside of the browser unto the desktop,
as shown in the next screenshot:

How it works...
Drag-to-install is another nice feature, found in the redesigned Java Plugin architecture (made
available as of version 1.6u10). It provides users with the ability to drag applets from their
embedded location in the browser directly onto the desktop. Let's see how this is done:

 f The JavaFX code—the application presented here is purely illustrative. It is a simple
digital clock that displays the current time. Notice, however, that the Stage literal
declaration includes a value for the property extensions:StageExtension[].
The StageExtension class is designed as an extension point for classes that
provide proile-speciic functionalities.

For this recipe, we use the AppletStageExtension class which provides
integration support between browser-embedded applets and the JavaFX application
Stage. Speciically, the AppletStageExtension is used here to deine the behavior
of the applet through callback functions when it is dragged off the browser page. The
code deines a callback function for the property shouldDragStart, which returns
true to indicate to the Java Plugin that the applet can be dragged.

Deployment and Integration

248

 f The packaging of the code—the javafxpackager tool necessitates using the
-draggable lag so that it generates the applet artifacts accordingly. The
command-line lag causes the code generated for the JavaScript launcher
to include a draggable parameter set to true as shown next:

<script>
 javafx(
 {
 archive: "draggable-demo.jar",
 draggable: true,
 width: 200,
 height: 75,
 code: "draggable.demo.Main",
 name: "draggable-demo"
 }
);
</script>

 f Running the applet—the applet runs as would any normal applet. However, due to
the Stage extension deined in the code, it will respond to the mouse's drag gesture.
When a user starts dragging the applet body off the browser's page, the Java Plugin
will invoke callback function AppletStageExtension.shouldDragStart. If the
function returns true, then the applet will be allowed to be dragged off the page.
Otherwise the drag gesture will be ignored.

There's more...
Before we leave this recipe, there are some additional items that we should address when
implementing drag-to-install behavior for our applets.

AppletStageExtension Hooks
The JavaFX AppletStageExtension class provides a multitude of useful runtime
information and event hooks for your applet. Here are some you will ind useful:

appletDragSupport:Boolean Use this lag to detect if the browser hosting the applet
supports out-of-page dragging.

useDefaultClose:Boolean When this lag is set to true (default), the applet will
automatically receive a loating close box to its right-
hand side (see previous igure). If set to false, the
developer is responsible for providing a mechanism for
closing the applet.

onDragStarted:function() This is called after it has been determined that the
applet is being dragged.

Chapter 7

249

onDragFinished:function() This function is called when the drag gesture is inished.
onAppletRestored:function() This function is called when the applet is closed by

the user (or programmatically) while the original
source web page is still opened. Then, the applet is
restored back into the page.

Preventing unintentional dragging
One technique used with draggable applets, to control unintentional dragging, is to detect
the pressing of a control key while dragging. To do this, we can modify our sample app by
changing the shouldDragStart function attribute:

Stage {
...
 extensions: [
 AppletStageExtension {
 shouldDragStart: function(e:MouseEvent): Boolean {
 return e.altDown and e.primaryButton;
 }
 }
]
}

With this change, the applet will only be dragged when the Alt key and the mouse's primary
button are both pressed together while dragging.

Control post-installation behavior
Let's discuss one last important point about applet dragging, then we are done. Recall
that an applet is rendered as an undecorated borderless window without any drag handles.
So, when you set up your app as drag-to-install, you must provide windowing controls
(close, move, minimize, maximize, and so on) to your users, so that when the application
is subsequently launched as a desktop application through Web Start, it can also be closed
or moved around the desktop.

One way to handle this situation is to use the AppletStageExtension properties, coupled
with the {__PROFILE__} pseudo variable, to determine how and when to display window
handles and decoration. You can use that value to properly set up windowing controls based
on the proile. For instance, when {__PROFILE__} = "desktop", display windowing
controls in the application.

See also
 f Building and packaging your app with javafxpackager

 f Packaging your app to be Web Start(ed)

 f Packaging your app as an applet

Deployment and Integration

250

Controlling JavaFX applets from JavaScript
Part of the appeal of JavaFX as a browser-based deployment platform is its complete
integration support between the browser and your JavaFX applets. When you deploy an
applet, the new Java Plugin (see Packaging your app as an Applet) provides full two-way
programmatic integration between your applet and JavaScript. In this recipe, we will see how
you can use JavaScript to update attributes and invoke functions from an embedded applet.

Getting ready
Before you embark on the techniques presented in this recipe, you should be familiar with the
deployment of your JavaFX applications as browser-embedded applets. If you are not, review
the recipe Packaging your app as an Applet, presented earlier in this chapter. Secondly, since
applets are embedded in HTML pages, you will need to have working knowledge of basic
HTML and JavaScript. If you are not familiar with either, there are numerous resources online,
including http://www.w3schools.com/html/ for HTML and http://www.w3schools.
com/js/ for JavaScript.

To demonstrate how you can use JavaScript to control and interact with an embedded JavaFX
applet programmatically, this recipe presents an application that allows users to use an HTML
form to control the attributes and appearance of a text message displayed in a JavaFX applet.

How to do it...
To accomplish this recipe, we need to break down the solution into several steps as shown
next. For the sake of saving space and keeping this chapter to a manageable length, the code
is abbreviated, highlighting the more interesting portions. You can get the full listing for all
recipe resources at location ch07/source-code/src/js2jfx/.

1. The JavaFX code—this is a simple JavaFX application that uses a Text node to display
a text message on the stage. The code also exposes several script-level attributes
and a script-level function designed to be accessed by JavaScript. The following
snippet is an abbreviated version of the JavaFX code; you can get the full code from
the ile ch07/src/source-code/js2jfx/JavaScript2JavaFXDemo.fx.
// public script-level properties

public var textContent = "Text Commander";

public var textColor = "blue";

public var textColorEnd = "blue";

public var textStrokeColor = "blue";

public var textStrokeWidth = "1";

public var textFont = "Helvetica";

var w=800;

http://www.w3schools.com/html/
http://www.w3schools.com/js/
http://www.w3schools.com/js/

Chapter 7

251

var h=100;

var text:Text; // text node

// call this fn to apply affect to text node

public function applyEffect(effect:Integer) {

 if(effect==0){

 text.effect = null;

 }

 if(effect==1){

 text.effect = Reflection{fraction:0.50};

 }

 if(effect==2){

 text.effect = DropShadow{offsetY:4}

 }

 if(effect==3){

 text.effect = Lighting {

 light: DistantLight { azimuth: -135 }

 surfaceScale: 5

 }

 }

}

// entry point

public function run() {

 text = Text {

 content: bind textContent

 style: bind "fill:{textColor};"

 "font-family:\"{textFont}\";"

 "font-size:64pt;"

 "font-weight:bold;"

 "fill:linear (0%, 0%) to (0%,100%)

 stops (0.0, {textColor}),

 (1.0,{textColorEnd});"

 }

 ...

}

Deployment and Integration

252

2. Packaging for browser deployment—to get the application deployed as a JavaFX
applet, it must be packaged as such. To do this, we will use the javafxpackager
tool (see the recipes Building and packaging your app using javafxpackager and
Packaging your app as an applet in this chapter). As we have seen in the previous
recipes, this step will yield a JAR ile, a HTML ile with the bootstrap JavaScript, and
a browser JNLP ile.

3. The HTML page—create an HTML ile which will embed both the applet and an HTML
form that controls the applet. Copy the bootstrap JavaScript stub, generated in
previous step, and add it to the HTML ile, as shown next. Modify the JavaScript code
by adding an id attribute to the javafx() parameter. Also, create a new function
named update() that will control the interaction between the JavaScript and the
JavaFX applet:
<html>

…

<body>

<script src="http://dl.javafx.com/1.2/dtfx.js"></script>

<script>

 // stub from packaging step

 javafx(

 {

 archive: "js2jfx.jar",

 width: 800,

 height: 100,

 code: "JavaScript2JavaFXDemo",

 name: "js2jfx",

 id:"js2jfx"

 }

);

 // added function to control JavaFX

 function update(color) {

 var js2jfx = document.getElementById("js2jfx");

 js2jfx.script.textContent =

 document.getElementById("msg").value;

 js2jfx.script.textFont =

 document.getElementById("font").value;

 ...

 js2jfx.script.applyEffect(

 document.getElementById("effect").selectedIndex

);

 }

</script>

<hr/>

<form>

Chapter 7

253

 <table>

 <tr><td>Text</td>

 <td><input id="msg" value="Text Commander"></td>

 </tr>

 <tr><td>Font</td>

 <td><input id="font" value="sans-serif"></td>

 </tr>

 ...

 <tr><td>Apply Effect</td>

 <td><select id="effect">

 <option value="0">None</option>

 <option value="1">Reflection</option>

 <option value="2">Drop Shadow</option>

 <option value="3">Lighting</option>

 </select>

 </td>

 </tr>

 <tr><td colspan="2">

 <input

 type="button"

 value="Set"

 onclick="update()"/>

 </td></tr>

 </table>

</form>

</body>

</html>

4. The last step is to deploy the HTML ile along with the JNLP and the JAR ile to a web
server. When you access the web page, you will see the applet and the HTML form
rendered on the same web page, as shown in the following screenshot:

Deployment and Integration

254

How it works...
In the code presented in this recipe, we are using the JavaFX-JavaScript bridge mechanism,
provided by the new Java Plugin, to create programmatic interactions between a JavaFX applet
and the JavaScript code embedded within a web page. The JavaScript code on the web page
can do the following:

 f Access JavaFX resources by calling functions
 f Access and update variable values
 f Pass in complex types
 f Traverse JavaFX's scene graph

Let us examine how the JavaFX script is set up in order to accept programmatic interaction
with the JavaScript

 f The JavaFX script—the JavaFX-JavaScript bridge accesses the JavaFX applet
through public script-level variables and functions declared in the main application
class. Therefore, our code declares several script-level members that can be reached
by JavaScript:

 � JavaFX public variable textContent is bound to the content
property of the Text object. When a value is assigned to it, it will
update the content of the Text node.

 � Public variables textColor:String, textColorEnd:String,
textStrokeColor:String, textStrokeWidth:String, and
textFont:String are bound to the style property of the Text
object. This will allow the appearance of the Text node to be updated
when any of these variables are updated from the JavaScript code.
For instance, when the textColor = "red", this will cause the
Text instance color to be updated to red.

 � The public function applyEffect(number):Void applies an
effect to the Text instance. The function can apply three effects to
the text including relection, drop shadow, and lighting. Each effect
is associated with a number, where 0 = no effect. This makes easy
for the function to be invoked from JavaScript to update the effect
on the Text object.

The HTML Page that displays the JavaFX applet contains the JavaScript code and the HTML
form used to interact with the applet. Let's see how things operate in there:

 f The JavaScript javafx() function—the JavaScript function javafx(), found in the
<script/> block, is used to initialize the applet on the web page. We have added
id:"js2jfx" to the parameter map as a value that will be used as a reference
identiier for the JavaFX applet object. This makes it easy to look up the object
representing the applet from the JavaScript document object model (DOM).

Chapter 7

255

Once the applet has been initialized, we can ask for an instance of the applet
object using the JavaScript function document.getElementById("js2jfx").

 f The JavaScript update() function—the other function in the <script/> block is the
update() function. This is where the JavaScript code interacts with the applet, so
let's take a look:

 � var js2jfx = document.getElementById("js2jfx")—this
line obtains a reference to the JavaFX applet (see previous bullet).
This object is used to communicate with the JavaFX applet directly.

 � Accessing JavaFX public properties—Now that we have a reference
to the JavaScript applet object, we can use js2jfx.script to
update or access the value of any JavaFX script-level property.
For instance, js2jfx.script.textContent = document.
getElementById("msg").value assigns the value of JavaScript
object msg to the JavaFX script-level property textContent.

 � Calling JavaFX functions—similar to accessing JavaFX properties,
js2jfx.script can also be used to invoke JavaFX public
script-level functions. In our example, the JavaScript call js2jfx.
script.applyEffect(...) invokes the JavaFX public script-level
function applyAffect(number) declared in the JavaFX code.

 f The HTML form—the remainder of the HTML source code contains the HTML
form used to control the applet. When the Set button is clicked, it invokes the
update() JavaScript function deined in the <script> block, which in turn
passes all the collected values to the JavaFX code through the JavaScript applet
object (see previous bullet).

As of version 6, update 18 of the Java's consumer runtime (JRE)
when this was tested, the features presented here only worked with
the next generation Java Plugin running on the Windows platform.
By the time you read this, support may be available for browsers on
other platforms.

There's more...
As discussed above, the JavaFX-JavaScript bridge lets you access JavaFX script-level public
variables and functions. This mechanism offers much more than depicted in the recipe above;
let's explore some additional capabilities.

Type crossing JavaScript to JavaFX
When updating JavaFX script-level properties or invoking a parameterized function, the
Java browser plugin framework will conduct an automatic type conversion to handle data
representation from JavaScript to the JavaFX environment. Here is is chart showing how
JavaFX types are mapped to JavaScript values.

Deployment and Integration

256

JavaFX­Type­
Expected

Compatible­JavaScript­Type

String Number Boolean Array
Object Yes Yes Yes No
String Yes No No No
Integer Yes—with valid

numeric
Yes—loat precision lost No No

Number Yes—with valid
numeric

Yes—integer converted
to double

No No

Boolean Yes—empty string =
false, all others = true

Yes—0 = false, all other
values converted true

Yes No

Sequence No No No Yes—with strict type
match on member
values.

Accessing the Scene graph
The JavaFX-JavaScript bridge lets you access the scene graph structure directly from
JavaScript using the js2jfx.stage.scene proxy object (assuming the applet id is
"js2jfx"). This implies that we could have written our JavaScript to update the content
of the text in the recipe,:

js2jfx.stage.scene.content[0].content = "some text";

The code snippet accesses the irst object in the Scene's content sequence which is the
Text object and updates its content to text value.

Accessing JavaScript from JavaFX
Throughout this recipe, we have seen how to interact and control JavaFX from JavaScript.
However, with the Java plugin architecture, it is also possible to do the opposite, where JavaFX
script can access JavaScript code embedded on the web page. To access JavaScript from
JavaFX, you must import the javafx.stage.AppletStageExtension class which, as the
name implies, provides an interaction point between your applet and the JavaFX stage. Using
AppletStageExtension, you can:

 f Launch a new web page

 f Evaluate JavaScript code

For instance, you can open a new browser window with:

javafx.stage.AppletStageExtension.showDocument("http://www.google.
com/");

Chapter 7

257

Or, if you have a JavaScript function named addTotal() deined on the web page, you can
invoke it using

javafx.stage.AppletStageExtension.eval("addTotal();");

See also
 f Building and packaging your app with javafxpackager

 f Packaging your app to be Web Start(ed)

 f Packaging your app as an applet

8
The JavaFX

Production Suite

In this chapter, we will cover the following topics:

 f Loading multiple images dynamically

 f Exporting Adobe Photoshop graphics to JavaFX

 f Exporting Adobe Illustrator graphics to JavaFX

 f Exporting Scalable Vector Graphics (SVG) to JavaFX

 f Using graphics loaded from FXZ Files

Introduction
Creating compelling and engaging user interfaces is an art best left to the professionals. The
JavaFX engineers understood this fact. That is why they released tools that make it possible
for graphics artists to work side-by-side with developers, allowing creative content to be easily
integrated as a part of the development worklow.

In this chapter, we are going to explore the different options available to developers to
integrate creative content into their JavaFX code using the JavaFX Production Suite. These
tools, distributed separately from the JavaFX SDK, include plugins for best-of-breed graphics
packages, such as Adobe Photoshop and Adobe Illustrator. Designers can export their artwork
directly from these graphics packages into a JavaFX ile format, FXZ, consumable within
JavaFX projects.

The JavaFX Production Suite

260

The Production Suite includes:

 f Adobe Photoshop plugin—a plugin that exports graphics objects from PSD iles to the
FXZ ile format.

 f Adobe Illustrator plugin—a plugin that exports graphics objects from Illustrator iles to
the FXZ ile format.

 f SVG File Converter—a utility that converts scalable vector graphics objects into the
FXZ ile format.

 f Graphics Viewer—a standalone viewer utility that lets you view the FXZ ile content.
Note that NetBeans also includes an FXZ ile viewer as well.

The following igure shows the path of integration that designers may choose to integrate their
creative content into JavaFX projects.

Loading multiple images dynamically
In Chapter 5, JavaFX Media, we have seen how to load a single image from a given location.
However, in certain situations (think of game development, or dynamically building a GUI), you
will ind it necessary to load multiple images into your application. If you are loading three or
four images, then there are no issues. If however you have, say, 30 or 100 images to load on
the scene graph, that will deinitely be a motivator to ind an easy way to load them (yes, good
developers are lazy and will look for ways to keep things simple, repeatable, and eficient).

This recipe shows you how to load multiple images into your application easily, and make
them available for programmatic manipulation and display. Although this recipe does not use
JavaFX's Production Suite tools, it presents an alternative approach for working with a large
set of image assets that may have been imported or generated by your creative team for
your JavaFX project.

Chapter 8

261

Getting ready
This recipe uses techniques to load images using the ImageView component that were
covered in Chapter 5, JavaFX Media. If you are not familiar with the ImageView component,
refer to the recipe Loading and displaying images with ImageView for details on how to embed
images in your JavaFX application. Other topics presented here include use of the Sequence
type to store a list of ImageView objects. Refer to Chapter 1, Getting Started with JavaFX for
further details on the Sequence type and its uses.

How to do it...
In this recipe, we are going to load 26 images, one for each letter of the alphabet. The code is
presented in an abbreviated form. Refer to ch08/source-code/src/alphabet/Main.fx
for a complete listing of the code and the images used in this recipe.

1. To get started, create one image ile for each letter, using your favourite designer tool.
For this recipe, you can use a commercial tool, such as Adobe Photoshop. However, if
you do not have access to Photoshop, you can use an open source alternative such
as GIMP (or anything that can create a PNG ile).

2. Save each image as a PNG ile, using the naming pattern X.png, where X represents
the letter associated with the ile (A.png, B.png, C.png, and so on). You should end
up with 26 image iles. Place all of the images in the same package (or sub-package)
directory as the JavaFX script that will be using them. For our recipe, the images are
placed in the alphabet/images folder, which is a level below where the script
is located.

3. Next, we start with the JavaFX script code. In the irst portion of the code, we declare
the sequence object, alphabet, representing the letters of the alphabet:
def imgW = 214;

def imgH = 182

// sequence with alphabet

def alphabet = [

 "A", "B", "C", "D", "E", "F",

 "G", "H", "I", "J", "K", "L",

 "M", "N", "O", "P", "Q", "R",

 "S", "T", "U", "V", "W", "X",

 "Y", "Z"

];

The JavaFX Production Suite

262

4. Then, we create another sequence instance, images, into which we are going to load
instances of Image class representing the PNG iles:
// load each image and add to sequence

var images:Image[];

for (letter in alphabet){

 insert Image {

 url: "{__DIR__}images/{letter}.png"

 backgroundLoading: false

 width:imgW height:imgH

 } into images;

}

5. Once the images are loaded, the code declares an instance of ImageView that will
be used to display the image on the screen:
var imgView = ImageView {

 x: (w - imgW)/2 y: (h - imgH)/2

 preserveRatio: true

 image: null

}

6. The last code segment requests input focus for the ImageView object. Then,
we deine a keyboard event-handler function to display the letter when a letter
key is pressed:

imgView.requestFocus();

imgView.onKeyPressed = function (e:KeyEvent) {

 imgView.image = {

 var img:Image = imgView.image;

 for(i in images){

 if(i.url.contains("{e.text}.png")) {

 img = i;

 break;

 }

 }

 img

 }

}

Chapter 8

263

The remainder of the code (not shown) builds the Stage and places the ImageView
object in the scene graph. Once the application is compiled and executed, it shows an
image of the letter when the corresponding letter is pressed on the keyboard, as shown
in the next screenshot:

How it works...
This recipe demonstrates the techniques involved in loading multiple images for display and
programmatic manipulation. Let's examine how it's done:

 f Image ile format—part of what makes this technique easier is that all images are of
the same format. This reduces the size of the code by assuming that all images are
of one type (PNG format here).

 f Image location—another important trick that makes this approach work is a uniform
location for all images. The images in this recipe are all located in the same directory,
source-code/src/alphabet/images. The JavaFX packager will automatically
add the images in the generated JAR ile and thus be available from the classpath for
easy access.

 f The alphabet sequence—lastly, using a natural series as the naming strategy
for the images makes it easy (not necessary) to load the images quickly. In
the recipe, the irst portion of the code declares a sequence of strings, named
alphabet:String[]. This Sequence instance contains all of the letters of the
alphabet. Recall that each image is named using a single letter of the alphabet
(that is, A.png, B.png, and so on). This sequence can be mapped directly to the
collection of image iles representing the alphabet.

 f Loading the images—next, the code does the following:

 � It declares variable images[] as a Sequence, used to store Image
instances that are created when the image iles are loaded.

 � The code loops through the alphabet sequence using the letter
variable. For each letter in the sequence, the code creates an
Image instance for the PNG ile that matches the current value
of letter, using the expression url: "{__DIR__}images/
{letter}.png". Then, the Image object is inserted in the
sequence images[]

The JavaFX Production Suite

264

 f Display and add interaction—once the images are loaded in the images[] sequence,
we can now create the ImageView object assigned to variable imgView that will
display the images.

 � The ImageView instance requests focus using the imgView.
requestFocus() function call. This causes the imgView
component to receive keyboard events.

 � A keyboard input event-handler function is attached to imgView
to handle keyboard key presses. The code loops through the
sequence of images to look for an Image instance whose url
property contains the value of the key pressed, as shown in the
following snippet:

for(i in images){

 if(i.url.contains("{e.text}.png")) {

 img = i;

 break;

 }

 }

 � When the image is found, the value is assigned to imgView.image
for display.

There's more...
A general approach to loading multiple images automatically is to use a predictable sequence
to name your image iles. For instance, for this recipe, we can use a numeric sequence of
integers as a part of the ile name instead of just the alphabet sequence of letters. So, the
image for letter A is named letter_0.png, the image for letter B is named letter_1.png,
and so forth, with the image for letter Z named letter_25.png. By doing this, our code gets
even smaller, where we no longer need the sequence alphabet[] to store the image names.
We can load the images as follows:

for (id in [0..25]){

 insert Image {

 url: "{__DIR__}images/letter_{id}.png"

 backgroundLoading: false

 width:imgW height:imgH

 } into images;

}

See also
 f Chapter 1—Creating and using JavaFX sequences

 f Chapter 5—Loading and displaying images with ImageView

Chapter 8

265

Exporting Adobe Photoshop graphics
to JavaFX

Say, for instance, you are heading a commercial JavaFX project. You decide to hire some
designers to create an exceptionally well-designed GUI with rich and creative content for
a compelling user experience. How do you integrate the work of your designers with the
code being created by your developers? Your integration route can take you in one of the
following directions:

 f Your designers can export a multitude of individual image pieces, which you have
to manage manually, and stitch into your application (see previous recipe). Although
this will work for a moderate number of items, it may not scale well for larger, more
complex UIs.

 f The other option is to provide your creative team with a way to integrate their work
directly into JavaFX code development.

In this recipe, we will explore the second option. We will see how to use JavaFX's Production
Suite tools to export graphics objects from the Adobe Photoshop to be integrated with JavaFX.

Getting ready
To be able to convert graphics objects from Adobe Photoshop to JavaFX graphics objects,
you must irst download the Production Suite from http://javafx.com/downloads/
and install it.

Production Suite is a set of tools that are part of the JavaFX platform that includes a plugin for
Adobe Photoshop CS3/CS4, a plugin for Illustrator CS3/CS4, an SVG converter, and a JavaFX
viewing tool named Viewer (see Introduction for further detail).

This recipe assumes that you have a working knowledge of Adobe Photoshop. The recipe
does not show you how to get started and create graphics content in Photoshop, but rather
how to export the content to be used in JavaFX. This recipe uses a simple set of artwork
as an illustrative tool to demonstrate the power of the Production Suite tools. However, the
techniques covered here will work for more complex creative work as well.

The JavaFX Production Suite

266

How to do it...
For this recipe, we are going to walk through the steps of exporting graphics objects from a
Photoshop project as JavaFX graphics objects.

1. First, you should ensure that you have installed the Production Suite tools properly.
Go to menu File | Automate, and you should see menu choice Save for JavaFX, as
shown in the following screenshot:

2. Next, create a new or open an existing Photoshop project. For this recipe, we will
be using the Photoshop project located in ch08/source-code/resources/
Symbols.psd. The previous screenshot shows the Photoshop ile used in this recipe.
It consists of several iconic symbols, where each symbol is assigned to a Photoshop
layer as shown below:

3. Each layer in the Photoshop artwork will be exported as a single image when
converted to the JavaFX ile format. Therefore, we will give each layer a descriptive
name preixed by jfx: to cause the plugin to use the name as provided.

Chapter 8

267

4. Now, export the Photoshop artwork to the JavaFX FXZ ile format. Select, menu item
File | Automate | Save for JavaFX to start the JavaFX export plugin from within
Photoshop. This will bring up the plugin's preview screen. Save the FXZ ile to a
location inside your JavaFX application's source path for easy access. For this recipe,
the exported FXZ ile is saved in the project's source directory at ch08/source-
code/src/fxzdemo/SymbolsPS.fxz.

How it works...
In this recipe, we have discussed how to use the JavaFX Production Suite's plugin to export
graphics objects from Adobe Photoshop to JavaFX. The plugin produces a single JavaFX FXZ
ile containing all graphical assets exported from the Photoshop PSD ile. Let's see how this
ile format works.

 f The FXZ ile—when you export your graphics objects from Photoshop using the
Production Suite plugin, the resulting FXZ ile is a zip-compressed ile that contains:

 � Graphic assets exported from the original PSD ile such as the
images generated from each layer of the Photoshop ile

 � Any embeddable fonts that are used

 � A data ile with an FXD extension (see There's more ahead)

 f Generated PNG iles—each layer in your Photoshop ile is rasterized down into a
separate PNG image ile. Photoshop layers with the jfx: preix in their names will
be exported using the the name provided. For instance, the Photoshop layer named
jfx:target will be exported as an image named target.png.

 f Text objects—text layers will be rasterized down to PNG iles by default, or can
optionally be exported as JavaFX Text nodes, which allows direct programmatic
manipulation of the text content in JavaFX.

There's more...
Once the FXZ ile is created, you can preview the exported ile in NetBeans or using Production
Suite's Viewer tool. Both NetBeans and Viewer give a device-dependent preview of the
exported graphics objects embedded in the FXZ ile.

The JavaFX Production Suite

268

The FXD data ile
The FXD ile, embedded in the FXZ ile, contains the object literal representation of a scene
graph containing all of the images (and other assets) exported by the Photoshop plugin. Let's
do a quick dissection of the ile, shown below:

/*
 * Generated by JavaFX plugin for Adobe Photoshop.
 * ...
 */
Group {
 clip: Rectangle { x:0 y:0 width:600 height:200 }
 content: [
 ImageView {
 id: "triangle"
 x: 25
 y: 135
 image: Image {
 url: "{__DIR__}triangle.png"
 }
 },

...
 ImageView {
 id: "target"
 x: 520
 y: 5
 image: Image {
 url: "{__DIR__}target.png"
 }
 },
]
}

Photoshop layers are organized into a group by default. The group is exported as a JavaFX
Group instance, where each layer within the group is mapped on to an ImageView node.
The group node is clipped at the same dimension as the original Photoshop artwork through
the clip:Rectangle property.

Each exported PNG ile, embedded in the FXZ ile, is represented by an instance of
ImageView with several properties, such as:

 f id—this is the node's unique identiier in the group. Notice that the value for the ID
matches the name of the layer from the Photoshop ile.

 f x and y location—this is the coordinate of the ImageView object within the scene
graph exported by the plugin.

 f image—this is an instance of Image that points to the PNG ile embedded in the FXZ
ile. Notice the image's name matches that of the layer from the Photoshop artwork.

Chapter 8

269

What gets exported
Although the Production Suite plugin exports Photoshop layers as PNG iles, the following
outlines additional assets that are exported in the FXD ile (as of version 1.2 of the SDK):

 f Layer effects—the plugin will export the following effects as native JavaFX
effect objects:

 � Drop Shadow / Inner Shadow—supports color, angle, size, and
opacity. However, blending options are omitted.

 � Outer Glow / Inner Shadow—supports color, size, and opacity.
However, bleeding and gradient options are omitted.

 � Other layer effects from Photoshop are rasterized as part of the
PNG image.

 f Color modes—the plugin will export only gray scale and RGB colors.

 f Layer masks or clipping mask—layers are converted to PNG format, and receive
a JavaFX blending effect with a BlendMode.SRC_IN value.

Exporting Adobe Illustrator graphics
to JavaFX

In the recipe Exporting Adobe Photoshop graphics to JavaFX, we saw how JavaFX's Production
Suite tools are used to integrate creative assets into the development worklow. In this recipe,
we are going to see how to use JavaFX's Production Suite to export Adobe Illustrator graphics
objects as JavaFX graphics objects.

Getting ready
To be able to convert graphics objects from Illustrator to JavaFX graphics objects, you must
irst download Production Suite from http://javafx.com/downloads/, and install it.

Production Suite is a set of tools that are part of the JavaFX platform that includes a plugin for
Adobe Photoshop CS3/CS4, a plugin for Illustrator CS3/CS4, an SVG converter, and a JavaFX
viewing tool named Viewer (see Introduction for further details).

The JavaFX Production Suite

270

This recipe assumes that you have a working knowledge of Adobe Illustrator. The recipe
does not show you how to use Illustrator to create graphical content, but rather how to export
artwork to be integrated directly into JavaFX projects. This recipe uses a simple artwork to
illustrate the power of the Production Suite. However, the techniques covered here will work
for more complex creative work as well.

How to do it...
For this recipe, we are going to walk through the steps of exporting graphics objects from an
Adobe Illustrator to JavaFX FXZ format.

1. First, you should ensure that you have installed Production Suite tools properly. From
Illustrator, go to the File menu on the main menu bar and look for menu choice Save­
for­JavaFX..., as shown in the following screenshot:

2. Create a new or open an existing Illustrator project. For this recipe, we will be
using the project located in ch08/source-code/resources/Symbols.ai.
The following igure shows the Illustrator ile used in this recipe. It consists of two
artboards containing a series of symbols, with each symbol assigned to a layer,
as shown in the next screenshot:

3. Each object in the Illustrator artwork will be exported as JavaFX scene graph nodes.
Therefore, we give each layer a descriptive name preixed by jfx: to cause the plugin
to use the name provided, as shown in the next screenshot:

Chapter 8

271

4. Now, export the artwork to the JavaFX FXZ ile format. Select menu item File | Save
for JavaFX... to start the Production Suite's plugin from within Adobe Illustrator. This
will bring up the plugin's preview screen. Save the FXZ ile to a location inside your
JavaFX application's source path for easy access. For this recipe, the exported FXZ
ile is saved in the project's source directory at ch08/source-code/src/
fxzdemo/SymbolsAI.fxz.

How it works...
The Production Suite's plugin for Adobe Illustrator produces a single JavaFX FXZ ile containing
all graphical assets exported from the Illustrator artwork. However, unlike Photoshop, Adobe
Illustrator uses vector graphics to render its artwork (rather than bitmap). The plugin attempts
to translates Illustrator's vector graphic objects directly into their JavaFX's vector counterparts
wherever possible. Let's see how the exported ile format works:

 f The FXZ ile—when you export your graphics objects from Adobe Illustrator using the
Production Suite plugin, the resulting FXZ ile is a zip-compressed ile containing one
or more data iles (with FXD extensions). Additionally, the FXZ ile will also contain
other graphical assets exported from the original Illustrator ile, such as embedded
images and fonts.

 f The FXD data iles—this is a textual ile format which contains JavaFX object literal
declarations of a scene graph, where the nodes in the graph represent objects
exported from the Illustrator artwork (see There's more..., ahead).

 f Artworks with Artboards—if artboards are used to group graphics objects in the
Illustrator artwork, the plugin generates the data iles as follows:

 � An FXD ile, with name pattern content-n.fxd, is generated for
each artboard, where n represents the artboard's ordinal value.
For this recipe, the artwork contains two artboards (have a look at
the artboards' igure under the previous How to do it section); the
generated FXZ ile has two FXD data iles named content-1.fxd
and content-2.fxd.

The JavaFX Production Suite

272

 � A FXD ile named content.fxd serves as the entry point for the
scene graph. It contains references to all other generated FXD when
artboards are used to group artwork objects (see previous bullet).
When there are no artboards grouping, the plugin only generates
this ile.

 f Generated PNG iles—when the original Illustrator artwork contains embedded
bit-mapped images, they are rasterized down to PNG image iles. These images
are embedded in the FXZ iles and are represented as ImageView nodes in the
FXD scene graph data (see There's more next).

There's more...
The plugin converts the vector graphics from the Illustrator artwork to a scene graph of native
JavaFX graphics nodes. Let's see how the graphics objects from Illustrator are exported in the
JavaFX FXD ile.

The code given next shows an abbreviated snippet of the FXD ile generated for artboard 1
(refer to ch08/source-code/src/fxzdemo/SymbolsAI.fxz for a full listing):

/*

 * Generated by JavaFX plugin for Adobe Illustrator.

 */

Group {

 clip: Rectangle {x: 0.0 y: 0.0 width: 640.0 height: 480.0}

 content: [

 Group {

 id: "flare"

 content: [

...

 Group {

 id: "star"

 content: [

 Polygon {

 points:[194.69,43.67,210.08,74.85,244.50...]

 fill: RadialGradient{

 proportional: false

 centerX: 194.69 centerY: 91.03

 focusX: 194.69 focusY: 91.03

 radius: 48.60

 stops: [

 Stop {offset: 0.000 color: Color.WHITE},

 Stop {offset: 1.000 color: Color.BLACK},

]

 }

Chapter 8

273

 stroke: Color.BLACK

 strokeWidth: 1.0

 },

]

 },

...

 // Embedded images

 Group {

 id: "Letter_A"

 content: [

 ImageView {

 fill: null

 stroke: null

 x: 439.33 y: 13.93

 image: Image{ url: "{__DIR__}G2LAew0.png"}

 }

]

 }

]

]

}

The Illustrator plugin organizes the JavaFX objects as a collection of nested instances of
Group classes as follows:

 f Root Group—there is a root Group instance that maps to the Adobe Illustrator
artboard as a container for all other graphics objects.

 f Exported layers—each layer exported from Illustrator is represented as an instance of
Group, where the group's id property is set to the name of the exported layer. The
graphics objects in the layer are then exported as native JavaFX graphic nodes inside
the group's content property. Images embedded in the original artwork are exported
as PNG images, and are represented by ImageView instances.

What gets exported
The following list outlines the objects supported by the Illustrator Plugin and how they are
exported to JavaFX:

 f Primitive shapes—basic Illustrator shapes (that is, line, polyline, rectangle, and
polygon) map directly to the corresponding JavaFX shape objects.

 f Curves, paths, and complex shapes—Illustrator curves are mapped to the appropriate
JavaFX curve classes when possible. However, if there are no corresponding graphics
classes for the shape being exported, the plugin will fall back to the JavaFX Path
class. In some instances, the plugin will use SVG, via the SVGPath class, to export
complex shapes.

The JavaFX Production Suite

274

 f Paint, Stroke, and Gradient—the plugin supports the paint, ill, and shape stroke
attributes from Illustrator to JavaFX using RGB colors. Gradients from Illustrator
map to either the LinearGradient or the RadialGradient class.

 f Effects—the plugin will export Gaussian Blur, Inner Glow, Outer Glow, and Drop
Shadow and can be exported as native JavaFX effect classes. Other effects can
optionally be exported as a rasterized images.

See also
 f Introduction

 f Exporting Adobe Photoshop graphics to JavaFX

Exporting Scalable Vector Graphics (SVG)
to JavaFX

In previous recipes, we have seen how to use commercial designer tools as part of the JavaFX
development worklow by integrating creative content from Adobe Photoshop and Illustrator
CS3/CS4. If you are not using these Adobe tools, (or in some cases using a older version),
or maybe you are a supporter of open source, is it possible to export creative content from
other tools into JavaFX? The answer is an emphatic "yes!".

Continuing with the theme of designer integration with JavaFX in this recipe, we will look at
how to integrate scalable vector graphics (SVG) into JavaFX projects using the Production
Suite tools. This will allow you to integrate directly scalable vector graphics created in
commercial or open source packages into JavaFX.

Getting ready
To be able to convert graphics objects from an SVG ile to JavaFX graphics objects, you
must irst download Production Suite from http://javafx.com/downloads/, and install
it properly. Production Suite is a set of tools that are part of the JavaFX platform, intended to
let designers easily participate in the development worklow by integrating their work directly
with JavaFX.

This recipe assumes that you have a working knowledge of scalable vector graphics and have
used tools to create artistic content as SVG iles. The recipe does not show how to generate
graphical content from your designer tools, but rather how to use JavaFX's Production Suite
tools to convert SVG iles into the JavaFX's FXZ ile format. The recipe will use an SVG ile
exported from Adobe Illustrator. However, any vector graphics package, commercial or open
source, with a mature support for standard SVG rendering should work as well.

Chapter 8

275

How to do it...
For this recipe, we are going to walk through the steps of exporting graphics objects from an
SVG ile to JavaFX's FXZ ile format for creative content integration.

1. First, you should ensure that you have installed the Production Suite tools properly,
and you can launch SVG Converter.

2. Next, create your artwork using your favorite vector graphics package, and save it
as an SVG ile. For this recipe, we will be using an SVG ile that was created with
Illustrator and is located ch08/source-code/resources/Symbols.svg. The
following igure shows the SVG ile used for this recipe:

3. Now, launch the SVG Converter utility tool that ships with the Production Suite. The
converter has a simple interface (see next screenshot), where you only need to select
the source SVG ile being converted and a destination where the generated FXZ ile
will be stored.

Once you click on the Convert button, the utility will convert your SVG ile to the FXZ ile format
at the location speciied.

How it works...
Similar to the Adobe Illustrator Production Suite plugin, the SVG Converter utility converts
the vector graphics in the SVG ile to produce a single JavaFX FXZ ile containing all of the
graphical assets exported from the SVG artwork. The plugin attempts to translate SVG objects
directly into their JavaFX's vector counterparts wherever possible. Let's see how the exported
ile format works:

 f The FXZ ile—when you export your graphics objects from SVG using the Production
Suite's SVG Converter, the resulting FXZ ile is a zip-compressed ile containing one
data ile, content.fxd. Additionally, the FXZ ile will also contain other graphical
assets exported from the original SVG artwork, such as linked or embedded images,
and fonts.

The JavaFX Production Suite

276

 f The FXD data ile—the conversion step will generate a data ile embedded in the FXZ
compressed ile named content.fxd. This is a textual ile, which contains JavaFX
object literal declarations of a scene graph that represents objects exported from the
original SVG ile.

 f Generated PNG iles—when the SVG ile contains bit-mapped objects (embedded or
linked), they are rasterized down to PNG or JPG image iles. Similar to the Illustrator
plugin, the SVG converter utility will rasterize complex visual effects that it cannot
convert to native JavaFX objects. All generated images are embedded in the FXZ
iles and are accessed using an ImageView node in the FXD ile.

 f Text—the SVG Converter tool will automatically export Text objects from the SVG ile
as Text instances in the JavaFX FXD ile. It will export the font's name, weight, and
size. However, the SVG to JavaFX conversion does not support embeddable fonts; if
the font is not there, it the Text object will default to a supported font.

There's more...
The current version of the Production Suite's SVG Converter supports several SVG standards,
including SVG 1.1 and SVG Tiny 1.1. The exported FXD data ile, content.fxd, contains a set
of nested literal declarations of Group instances organized as follows:

 f Root group—the FXD ile contains a root Group instance that serves as a container
for all other groups of objects exported from the SVG ile.

 f Exported layers—each <g> (or group) tag in the SVG document is mapped to a Group
instance in the FXD document. The Group's id:String property is set to the value
of the <g> tag's id attribute. The vector graphics objects in each <g> elements are
then exported as either native JavaFX graphics nodes or as instances of SVGPath,
with path values copied from the SVG ile.

What gets exported
The following outlines the objects supported by the SVG Converter and how they are exported
to JavaFX:

 f Primitive shapes—basic shapes such as line, polyline, rectangle, polygon, and oval
map directly to the corresponding JavaFX shape objects.

 f Curves, paths, and complex shapes—SVG curves are mapped to the appropriate
JavaFX curve classes whenever possible. However, if there are no corresponding
graphics classes for the shape being exported, the converter will fall back to the
JavaFX SVGPath class to export complex shapes.

 f Paint, stroke, and gradient—the converter supports the paint and strokes, and stroke
attributes from SVG to JavaFX using RGB colors. Gradients from the SVG artwork will
map to either the LinearGradient or the RadialGradient class. If the gradient is
part of a complex shape, the converter may choose to export it as a rasterized image.

Chapter 8

277

 f Transformation—the SVG Converter utility supports object transformation routines
applied to objects in the SVG ile. The utility will export transformation matrices using
the Transform.affine() method.

Features not supported
As of version 1.2 of the SDK, the SVG Converter will ignore the following features when they
are included in the SVG ile:

Animations

Scripting or Interactivity

Filter Effects

Masking

Embeddable Fonts

Text Layout or Text on Path

Color Proiles

Element <metadata/>

Element <use/>

Element <defs/>

Inkscape and JavaFX
Inkscape is a widely used, open source alternative vector graphics editor. By default, it uses
SVG to save its graphics iles. The format used in Inkscape uses non-standard SVG elements
to save layer information. As of version 1.2 of the Production Suite, there's a bug in the SVG
Converter that prevents it from properly exporting the layer ID values as the ID value of the
Group object instance. Future release of the Production Suite should address this issue.

See also
 f Introduction

 f Exporting Adobe Photoshop graphics to JavaFX

 f Exporting Adobe Illustrator graphics to JavaFX

Using objects loaded from FXZ iles
In the previous recipes, we have seen how to integrate creative content from tools, such as
Adobe Photoshop and Illustrator, into JavaFX projects using the Production Suite tools. In this
recipe, we are going to see how to load graphics nodes from a FXZ ile. You will learn how to
use NetBeans to generate JavaFX UI stub classes that provide programmatic access to the
objects inside the FXZ iles.

The JavaFX Production Suite

278

Getting ready
Prior to continuing with the materials in this recipe, you must be familiar with the topic of
generating FXZ iles covered in the recipes Exporting Adobe Photoshop graphics to JavaFX,
Exporting Adobe Illustrator graphics to JavaFX, and Exporting Scalable Vector Graphics (SVG)
to JavaFX. You will need an FXZ ile generated using the methods discussed in these recipes.

Another requirement for this recipe is the use of the NetBeans IDE. The techniques covered
here use features available in that IDE. If you are not a NetBeans user, see the There's more
section to see how to craft your own code in order to load and programmatically manipulate
graphics objects from an FXZ ile without NetBeans manually.

How to do it...
To use the embedded objects in the FXZ ile, we are going to generate UI stubs using
NetBeans. Follow these steps:

1. FXZ ile—make sure that your FXZ ile is in a location accessible by your code. The
easiest location is to place the FXZ ile in the same package (or sub-package) as the
class that will be using its graphics objects. For this recipe, we are going to use the
FXZ ile ch08/source-code/src/fxzdemo/SymbolsPS.fxz to generate a UI
stub class.

2. Generate the UI stub class—from NetBeans, right-click on the FZX ile from which
you want to generate the UI stub, and select Generate UI stub, as shown in the
following screenshot:

This will bring up a dialog box for customization of the generated classes.
Specify the package location and the name of the generated UI class, as
shown in the next screenshot.

Chapter 8

279

3. The UI stub—for this recipe, we generated class ch08/source-code/src/
fxzdemo/NbGeneratedSymbols.fx from the FXZ ile. The generated class
extends class FXDNode as shown in the next snippet:
public class NbGeneratedSymbols extends FXDNode {

 override public var url = "{__DIR__}SymbolsPS.fxz";

 public-read protected var icon_1: Node;

 public-read protected var icon_0: Node;

 public-read protected var icon_2: Node;

 public-read protected var icon_3: Node;

 public-read protected var icon_4: Node;

 public-read protected var icon_5: Node;

 public-read protected var target: Node;

 public-read protected var triangle: Node;

 override protected function contentLoaded() : Void {

 icon_1=getNode("icon_1");

 icon_0=getNode("icon_0");

 icon_2=getNode("icon_2");

 icon_3=getNode("icon_3");

 icon_4=getNode("icon_4");

 icon_5=getNode("icon_5");

 target=getNode("target");

 triangle=getNode("triangle");

 }

}

The JavaFX Production Suite

280

4. Using the generated stub—as an instance of Node, the generated stub class
can be added into a scene graph. The following abbreviated snippet shows class
NbGeneratedSymbols used as the basis for a simple game. The full code for
this is located at ch08/source-code/src/fxzdemo/Targeting.fx.

...

def symbols = NbGeneratedSymbols{};

def triangle = symbols.triangle as ImageView;

def target = symbols.target as ImageView;

target.x = triangle.x;

symbols.requestFocus();

symbols.onKeyPressed = function (e:KeyEvent) {

 if(e.code.equals(KeyCode.VK_RIGHT)){

 target.translateX = target.translateX + 15;

 triangle.translateX = triangle.translateX + 15;

 }

 if(e.code.equals(KeyCode.VK_LEFT)){

 target.translateX = target.translateX - 15;

 triangle.translateX = triangle.translateX - 15;

 }

 if(e.code.equals(KeyCode.VK_SPACE)){

 for(i in [0..5]){

 var icon = symbols.getObject("icon_{i}") as Node;

 if(icon.intersects(target.boundsInParent)){

 icon.visible = false;

 break;

 }

 }

 }

}

...

When the variable symbols is added to the scene, and the script is executed, it displays the
game shown in the next screenshot. As the red triangle moves left or right using the arrow
keys, it targets the icons lined up at the top portion of the window. When the Spacebar key is
pressed to ire, the target icon goes off screen:

Chapter 8

281

How it works...
In this recipe, we have loaded and programmatically manipulated graphics objects
encapsulated in JavaFX's FXZ ile. The recipe uses NetBeans to generate a UI stub
class that exposes all of the objects inside the FXZ ile. Let's see how the UI stub works:

 f UI stub class—the UI stub extends FXDNode. In our recipe, the stub class is named
NbGeneratedSymbols. It is a class designed to represent graphics objects from
FXZ iles. The UI stub class encapsulates all top-level group nodes (mapped to layers
in original artwork) declared in the FXD ile and exposes them as public properties in
the generated class.

 f FXDNODE.contentLoaded()—this method is called when the class has fully
loaded all graphics objects. Here, it is overwritten to populate the public variables
that expose the content of the FXD ile as object properties. Notice the use of
function getNode(id:String), used here to retrieve a graphics node by
its id.

The other portion of this recipe deals with the usage of the generated UI stub. Let's
analyze what is going on:

 � First, the code declares variable symbols as an instance of
NbGeneratedSymbols class.

 � Next, the code pulls out the image for the target and the
triangle as ImageView instances from the symbols object.

 � Then, symbols receives the window's focus; this will enable it to
receive keyboard events.

 � Next, the code adds event-handler function
onKeypressed(e:KeyEvent) to the symbols object to process
keyboard input events. Here, Left arrow, Right arrow, and Spacebar
key events are used to provide interactivity to the game. When the
left or right arrow moves, it updates the position of both the triangle
and the target icons. When the Spacebar key is pressed, the code
hides the icon which intersects the target icon.

There's more...
Earlier in this recipe, we have seen how to generate UI stub classes from FXZ iles using
NetBeans to access graphics objects inside FXZ iles. If you do not use NetBeans or want
tighter control of how FXZ objects are loaded, you can use the FXD API directly, located in the
javafx.fxd package, to customize how objects are loaded from the FXZ iles. You can see
listing of these techniques in iles ch08/source-code/src/fxzdemo/FxdNodeLoad1.fx,
FxdNodeLoad2.fx, FxdNodeLoad3.fx, and FxdNodeLoad4.fx.

The JavaFX Production Suite

282

Using FXDNode to load objects
You can use the FXNode class directly to load the top-most group encapsulated in the FXD
ile. This approach works well when you are interested in loading all objects in the scene graph
as a group quickly, and place them on the scene or in another container node.

var artwork = FXDNode {

 url: "{__DIR__}SymbolsPS.fxz"

}

Variable artwork will be an instance of an orphaned Node. Therefore, you can nest artwork
in a container node, such as Scene or another group as follows:

Scene{content: artwork}

Accessing Group nodes directly
If your artwork has several nested groups, as do vector graphics exported from SVG or
Illustrator, you can use FXDNode to load them directly as shown below:

var artwork = FXDNode {

 url: "{__DIR__}SymbolsPS.fxz"

}

def flare = artwork.getGroup("flare");

This method returns a Group instance of the selected object.

Accessing objects directly
You can also use the FXDNode instance to access individual graphics objects nested
inside the FXD ile's scene graph by their IDs.

var artwork = FXDNode {

 url: "{__DIR__}SymbolsPS.fxz"

}

def triangle = artwork.getNode("triangle") as ImageView;

def target = artwork.getNode("target") as ImageView;

The code snippet demonstrates the use of FXDNode.getNode(id:String):Node to
retrieve graphics objects using their id property value.

Placing non-orphaned nodes
When working with the FXD API to access objects directly, as shown previously, retrieving
nested objects will return non-orphaned nodes that are part of the FXDNode scene graph
(considered as a parent container). You will get an error if you attempt to move non-orphaned
nodes into another parent container node. The scene graph engine in JavaFX only allows
nodes to have one parent node and will not automatically re-assign parents. To get around
this, the FXD API offers the Duplicator class which automatically returns a cloned,
orphaned copy of the node:

Chapter 8

283

def artwork = FXDNode{url:"{__DIR__}SymbolsAI.fxz"}

def flare = Duplicator.duplicate(artwork.getGroup("flare"));

Stage {

 title: "Targeting"

 scene: Scene {

 width: 200

 height: 200

 content:[flare]

 }

}

If you attempt to place lare directly on the stage without the duplicator step, it will generate
an error.

Using FXDNode to load object asynchronously
FXDNode is designed to support asynchronous loading of your artwork from the FXZ ile.
This is helpful in cases when the FXZ ile is either large or being loaded from a remote
location (or both). Doing it asynchronously ensures that the UI stays responsive, even
when the load operation takes a few seconds. The following loads artwork content
from ile SymbolsAI.fxz asynchronously:

def artwork = FXDNode {

 url: "{__DIR__}SymbolsAI.fxz"

 backgroundLoading: true

 placeholder: Text{ x:10 y: 10 content: "Loading..."}

}

Event notiications through FXDLoader
Your code can receive event notiications as the FXZ ile loads using the FXDLoader class.
The following code will be notiied when the FXZ ile starts to load and when it is done loading:

def artwork:FXDNode = FXDNode {

 url: "{__DIR__}SymbolsAI.fxz"

 backgroundLoading: true

 placeholder: Text{ x:10 y: 10 content: "Loading..."}

 loader:FXDLoader{

 onStart:function() {

 println ("Image loading started")

 }

 onDone:function() {

 println ("Image loading done");

 println ("Loaded "

 "{sizeof artwork.getRoot().content} objects");

 }

 }

}

The JavaFX Production Suite

284

See also
 f Introduction

 f Exporting Adobe Photoshop graphics to JavaFX

 f Exporting Adobe Illustrator graphics to JavaFX

 f Exporting Scalable Vector graphics (SVG) to JavaFX

A
Mobile JavaFX

As of the release of version 1.2 back in early 2009, JavaFX now includes support for both
desktop and mobile development. The NetBeans IDE offers full support for mobile development,
including mobile device emulator, packaging, and deployment. If you are not a NetBeans user,
you can use the javafxpackager tool, along with the emulator tool, to emulate mobile content
on your workstation.

As of version 1.2 of the SDK, JavaFX Mobile
development is only supported on the Windows platform.

JavaFX Mobile is a software layer that runs on top of the Java ME (speciically, the CDC proile)
on smartphones capable of providing rich content and an engaging experience. Because Java
ME is already supported on a large number of handset models, JavaFX has the potential to be
widely available on mobile devices.

When writing your application, you need to select APIs carefully to maximize portability. If you
know that your application will only run on the desktop, you are free to exploit the desktop
APIs without portability worries. However, if you plan to push your application to both the
desktop and the mobile environments, you will then be constrained to use APIs that satisfy
both desktop and mobile runtimes. A good rule to follow is to program using common proiles
as a common denominator to arrive at an application that can run on both proiles.

Mobile JavaFX

286

If, on the other hand, your application is strictly targeted for the mobile environment, then you
will have more freedom to take advantage of the Java ME features for mobile devices, such
as Bluetooth and GPS. Another interesting issue that arises with mobile development is the
constraint created by physical characteristics of the device, including input mode, screen size,
CPU, and memory. When targeting mobile environments, be aware of the limitations of the
mobile proile. Use some of the following points as guidelines:

 f JME is not JS—do not expect the standard Java libraries to be available on the mobile
runtime. While some stripped down version of Java SE APIs are present in ME, others
do not exist at all. For instance, avoid using Swing components in your application;
instead, use the native JavaFX controls, and let the runtime module translate them to
their Java ME component counterparts.

 f Screen relow—newer devices support screen orientation changes; you may have to
create GUI layouts that let your components automatically resize or relow based on
the orientation of the screen. The layout of your controls should relow gracefully to
handle portrait or landscape screen modes.

 f Use vector graphics—try to use vector graphics where possible, as they are easily
portable between platforms and can resize with no degradation.

 f Apply affects ahead of time—as of version 1.2 of the SDK , paint effects are not part
of the common proile; therefore, if you need paint in your effects, create a bitmapped
image with the paint effect already applied, then load the image.

B
JavaFX Composer

In late December 2009, Sun­Microsystems (which eventually became part of Oracle) released
the irst preview version of­JavaFX­Composer—a What­You­See­Is­What­You­Get (WYSIWYG)
tool for building rich, graphical GUIs. It borrows its visual metaphors from graphical design
tools where developers drag components from a palette and arrange them on the stage
during design. Composer generates the appropriate JavaFX code to keep both design-view
and code-view synchronized. JavaFX Composer supports the following functionalities:

 f Drag-and-drop design—Composer supports the ability to drag visual components and
GUI controls directly on Stage. Composer provides a WYSIWYG designer environment
with on-the-ly alignment guides, property editors, and round-trip code synchronization
(these are the same characteristics found in NetBeans Swing GUI Builder). Besides
visual components, developers can drag-and-drop other visual components, including
paint, effects, and charts. Composer even provides a Design Analyser that dynamically
detects design issues as they occur.

 f The Data source framework—Composer introduces the DataSource API, designed to
simplify and standardize access of data from different sources. Each source type comes
with a corresponding DataSource, including HttpDataSource, DbDataSource,
FileDataSource, StorageDataSource, and ClassPathDataSource. The
DataSource API also offers a iltering mechanism to let users select data nodes,
using an XPath-like expression. Composer provides coniguration wizards as well,
to help developers walk through the steps for setting up a data source.

 f States—this is a mechanism that lets developers organize visual components based
on a set of current property values (or states). This feature is synonymous to building
a presentation, where the slide represents a state in which a component can appear.
For each state (slide), the components may have different property values. When
the user switches to a different state, the new property values are applied to the
components. Users may switch between states by generating an event or through
user actions. The action of switching between states can be controlled to include
transition animations and effects that are automatically scripted by Composer.

JavaFX Composer

288

 f Binding—Composer builds on the data-binding functionality built in to JavaFX to
facilitate binding of component properties to either simple values, data sources,
or to other component properties. Within Composer, developers are able to specify
arbitrary bound expressions with custom type conversion supported. Regardless of
what the properties of a component are bound to, the mechanism is still the same:
when the target expression is updated, the bound property is updated automatically.

C
JavaFX Products and

Frameworks

Despite its infancy, JavaFX has commanded a tremendous following within a short period
of time. Currently, there are a combination of commercial and open-source products and
frameworks available for or in support of JavaFX:

 f WidgetFX—this is a platform on which you can run desktop widgets built entirely in
JavaFX. It is inherently cross-platform and will run on operating systems that support
JavaFX. Other features of WidgetFX include a growing number of available widgets,
a simple one-click installation, open source code, a robust security model based on
Java’s own setup, and a small footprint. See http://widgetfx.org/ to ind out
how to create widgets.

 f On2 JavaFX Video Encoder—JavaFX uses On2’s technologies for its cross-platform
and portable video codec called FXM. On2 provides two tools, Flix Pro and Flix
Standard, to allow content creators to encode videos directly into the FXM format.
See https://flix.on2.com/ for details about On2’s Flix product line.

 f Exadel JavaFX products—Exadel, a company well-known for its enterprise view
technologies, got in the JavaFX game early with two offerings for developers. Exadel
offers JavaFX­Studio as an alternative IDE for JavaFX development. JavaFX Studio is
an Eclipse plug-in with features such as new project/class setup wizards, code editor
with syntax completion/highlight, and deployment wizards. The other offering from
Exadel is called Flamingo. It is a framework that provides client-side components
for data connectivity so that JavaFX can be implemented as a view technology for
server-side Spring, Seam, or Java EE components. Go to http://www.exadel.
com/ for more details on Exadel products.

JavaFX Products and Frameworks

290

 f JFXtras—this is one of the earliest efforts to create a third-party, open-source
extension to JavaFX. JFXtras boasts a sizeable collection of components, including
layouts, borders, visual controls, persistence, and threading. From their website,
JFXtras includes an entire community of users, complete with code samples, support,
and other valuable resources. See http://jfxtras.org/ to see all components
available from JFXtras.

 f ReportMill’s DataBox—previously known as JFXBuilder, this an interesting tool. It
allows its users to create fully functional and deployable JavaFX applications by
simple point-and-click. As the name implies, DataBox has inherent support for
data connectivity, including database, FTP, and the cloud. Applications created with
DataBox can be deployed as applets and run on any browser that supports JavaFX.
For details, visit http://www.reportmill.com/dbox/.

 f MemeFX—this is another open-source component collection. It started out as an
offering of multi-parameter analog gauges created in JavaFX. However, the project
has evolved to offer other visual components including image controls, HTML text
controls, menus, and stage extensions. See http://code.google.com/p/
memefx/ for details.

D
Best Practices for

Development

Practitioners of JavaFX can easily abuse its ease of use to create applications that perform
and scale poorly. This section provides a list of some practices that should help you avoid
performance or usability penalties.

 f Declare your variables using the def keyword—always use the def keyword to declare
your variable, unless you know for certain that the variable will be updated later or is
a bound variable.

 f Stay off the EDT—JavaFX applications are inherently single-threaded running on one
special thread called the Event Dispatch Thread (EDT). All GUI activities are handled
on the EDT. If you execute long-running processes directly in your JavaFX code, they
will degrade the responsiveness of the UI or make it outright unusable. JavaFX offers
the Task API, which is designed to provide the mechanism to execute processes
asynchronously.

 f You can do this in three steps:

1. Create a Java class that implements javafx.async.RunnableFuture and
overrides the run()method, which contains the asynchronous code that you
want to run:
public class LongRunningRunnable implements RunnableFuture{
 private long limit = Long.MAX_VALUE;
 public LongRunningRunnable(long l){limit = l;} // constructor
 public void run() throws Exception {
 for(int i = 0; i < limit; i++){
 Thread.currentThread().sleep(200);
 }
 }
}

Best Practices for Development

292

2. Next, create a JavaFX class that extends javafx.aysync.JavaTaskBase and
overrides function create():RunnableFuture, which returns an instance
of the newly-deined Java class above to be executed in its own thread:
public class LongRunningTask extends JavaTaskBase{
 public-init var limit = Long.MAX_VALUE;
 override protected function create () : RunnableFuture {
 new LongRunningRunnable(limit);
 }
}

3. Lastly, use the JavaFX class (deined above) to start your long-running process on its
own thread:

var t = LongRunningTask{limit:Byte.MAX_VALUE}
t.start(); // start task on its own thread

 f Reuse image objects—if you have an image that appears in multiple places, load the
image once using the Image object, then reuse the Image instance in any image
number of ImageView instances. That way, you don’t have duplicated bytes wasting
memory resources.

 f Scale media to size—avoid using images or videos at larger resolutions than
needed. When possible, encode your media to the size and resolution that you
will actually need. This will avoid unnecessary scaling transformation penalties
when scaled in JavaFX.

 f Turn off smooth—when your scene graph contains a large number of shapes, you
can gain performance by setting the smooth property to false in order to reduce
the overhead required for anti-aliasing wherever possible.

 f Cache your visual nodes—when the scene graph engine paints its node on the
screen, you can avoid repaint penalties by caching complex non-rotated object
graphs. Caching causes the engine to reuse previously rendered images, rather
then repainting the scene every time.

 f Remove instead of hide—to keep your node rendering time down, and increase
performance, you should delete objects from the scene graph instead of setting
property visible to false whenever possible.

 f Avoid Gratuitous Effects and Animations—effects (paint, transformation, scale, and
so on) and animations incur processing overhead, especially with large numbers of
nodes. Avoid applying effects and animations unless absolutely necessary.

 f Ungroup paint effects—when your nodes are encapsulated in a Group instance,
apply your effects to individual nodes instead of the Group node. This provides
granular control of where the effects are applied and helps avoid necessary
rendition of effects.

Appendix D

293

 f Set timeline’s frame rate—when you are working with fairly complex animations, you
can provide better directives for frames generated by specifying the framerate
property. If not, the engine will attempt to determine the best frame rate value to
achieve the animation, which can result in wasted frames being generated.

 f Use binding sparingly—data binding is a useful and a killer feature in JavaFX. Just
like anything else though, its unnecessary overuse can be troublesome. Improper or
careless binding can lead to cascading triggers that causes unwanted performance
degradation that are hard to ind. Use data binding only when you understand the
event path and values that are updated during binding update. In most cases,
updating a variable directly by setting its value works better.

E
Best Practices for

Deployment

The irst impression of your application comes from the experience users have as they attempt
to procure or launch the application for the irst time. It is important to avoid the appearance
of a broken application by giving your users the ability to ind, download, or start your
application easily. Here are some tips for application deployments:

 f Load JARs lazily—JavaFX applications jars are downloaded eagerly by default using
Java­Network­Launching­Protocol (JNLP). This is ine for smaller applications. However,
when you have several large JARs that are part of your application's manifest, this can
cause a delay in startup time. You can change this behavior and download JAR iles
lazily as needed. Update your JNLP ile with:
<jnlp>
 ...
 <resources>
 <jar href="demo-util.jar" download="lazy"/>
 ...
 </resources>
</jnlp>

Best Practices for Deployment

296

 f Index your classes—one way to improve startup performance is through the use of
JAR class indexing. Traditionally, the class loader will traverse each JAR to look for
a classes to load. This can be a performance killer at startup to wait for JARs to
download and classes to be loaded. Indexing is used to by the class loader to ind
classes quickly that are embedded in the JARs. To index your classes, use the jar
command line tool with the -i option followed by a list of JAR iles to be indexed
(as shown next). The index information is saved as a text ile embedded inside the
irst JAR ile listed in the command.
jar -i main-app.jar \
 jar-module-1.jar \
 jar-module-2.jar \
 jar-module-3.jar \
 ...
 jar-module-N.jar

 f Compress JARs with Pack200—it goes without saying that the size of your JAR iles
will impact startup time. You can further squeeze the size of your JAR iles with the
pack200 option when packaging your application with the javafxpacakger, using
the -pack200 lag as follows:
javafxpackager -src src \
 -appClass draggable.demo.Main \
 -appName demo-app \
 -pack200

 � In addition to demo-app.jar, this command line also
generates the ile demo-app.jar.pack.gz that will be
downloaded at runtime. The command also injects the
property jnlp.packEnabled into the JNLP ile as follows:

<jnlp>

 ...

 <resources>

 ...

 <property name="jnlp.packEnabled" value="true"/>

 </resources>

</jnlp>

 f Provide ample memory—avoid application death caused by 'out of memory' exceptions.
This is a nasty situation which can damage the reputation of your app as being broken.
The good news is, it can be easily prevented by setting the heap size of your app in the
JNLP ile
<jnlp> ...
 <resources>
 <j2se version="1.6+" max-heap-size="256m" />
 ...
 </resources>
</jnlp>

Appendix E

297

 f Avoid excessive JAR update checks—JavaFX applets and Web Start applications will
automatically check for updates for the JAR iles included in your application upon
startup. You can either turn that off (if you don't plan on having updates), or do the
update in the background by specifying it in your JNLP ile as follows:
<jnlp>
 ...
 <update check="background"/>
</jnlp>

 f JAR versioning—if you decide to have your JARs be updated automatically
(see previous bullet point) you can use JNLP's JAR-versioning mechanism.
It uses this mechanism to update JAR iles when version number changes,
instead of checking for updates for all JARs. To take advantage of this, name
your JARs using this format {jar-name}_V{version-number}.jar, for example
demo-util_V1.0.jar. Then, set the jnlp.versionEnabled attribute
in the JNLP ile as shown:
<jnlp>
...
 <resources>
 <jar href="demo-app.jar" main="true"/>
 <jar href="demo-util.jar" version="1.0"/>
 <property name="jnlp.versionEnabled" value="true"/>
 <resources>
</jnlp>

 f Avoid signing your application—while a properly signed application can establish a
certain level of trust, signing, however, can introduce new dialogue boxes that force
users to conirm their trust in the application issuer. So, unless you absolutely need
signing, avoid it. An unsigned application causes a security dialogue to appear only
when the application attempts to execute privileged code. Furthermore, users can
opt to trust the the unsigned application and no longer be presented with future
security warnings.

Index
Symbols
@argiles­option­­21
:Boolean­type­­27
.broad:hover{}­selector­­152
__DIR__­pseudo-variable

about 159
media assets, accessing 158

__DIR__­variable­­158
.dmg­ile­­10
-d­option­­21
:Duration­type­­27
.exe­ile­­10
__FILE__­pseudo­variable­­159
:focused­pseudo-class­­152
:hover­pseudo-class­­152
:Integer­type­­27
.jar­ile­­11
\n­­63
:Number­type­­27
:pressed­pseudo-class­­152
:String­type­­27
:Void­type­­27

A
access­modiiers,­JavaFX

about 73
default 73
package 73
protected 73
public 73
public-init 73
public-read 73

action:function()­function­­97
action:function()­property­­124,­223
action­property­­99

Adobe­Illustrator­plugin
about 260
graphics, exporting to JavaFX 269-273

Adobe­Photoshop­plugin
about 260
graphics, exporting to JavaFX 265-267

after­clause­­39
animate()­function­­138
animation

building, KeyFrame API used 93-97
composing, Transition API used 89-91
creating, Transition API used 85-87
custom interpolators, creating for 100, 101

AnimationPath­class­­87
animation­types,­JavaFX

keyframe 82
transition 82

API­integration­­37
AppletStageExtension­Hooks

appletDragSupport:Boolean 248
onAppletRes-tored:function() 249
onDragFinished:function() 249
onDragStarted:function() 248
useDefaultClose:Boolean 248

application­organization­­46
arcHeight­property­­52
Arc­shape­class­­53,­54
Arc­shape­class,­types

ArcType.CHORD 54
ArcType.OPEN 54
ArcType.ROUND 54

ArcTo,­path­element­­56
ArcType.CHORD­type­­54
ArcType.OPEN­type­­54
ArcType.ROUND­type­­54
arcWidth­property­­52

300

a:Shape[]­property­­57
Atom

about 186
creating, Feed API used 213-216
handling 218

at()­syntax­­98
attraction:Number­property­­101
audio

playing, with MediaPlayer 172-174
autoReverse:Boolean­property­­87
autoReverse­property­­88,­91
azimuth­property­­113

B
backgroundLoading:Boolean­property­­162
BarChart­class­­223
BarChart.Data.barCreator­property­­223
before­clause­­39
binding

variables, updating 28
bin­directory­­11
bind­keyword­­28,­30
BlendedMode­class­­172
Blend­effect­­113
blending­options,­JavaFX

BlendMode.ADD 172
BlendMode.COLOR_BURN 172
BlendMode.DARKEN 172
BlendMode.DIFFERENCE 172
BlendMode.LIGHTEN 172
BlendMode.MULTIPLY 172
BlendMode.OVERLAY 172
BlendMode.SCREEN 172

BlendMode.ADD­mode­­172
blendMode:BlendMode­property­­171
BlendMode.COLOR_BURN­mode­­172
BlendMode.DARKEN­mode­­172
BlendMode.DIFFERENCE­mode­­172
BlendMode.LIGHTEN­mode­­172
BlendMode.MULTIPLY­mode­­172
BlendMode.OVERLAY­mode­­172
BlendMode.SCREEN­mode­­172
BlendMode.valueOf(:String)­property­­171
Bloom­effect­­113
boolean­operations,­CAG

AND 57

NOT 57
OR 57

bottomOpacity­property­­118
BoxBlur­effect­­113
b:Shape[]­property­­57
bSlide­element­­130
Button­control­­124,­141

C
CAG

shapes, creating 58, 59
working 59

Cascading­Style­Sheets.­See­­CSS
Chart­API

charts, customizing 223, 224
data, visualizing 220-222

CheckBox­control­­124,­141
Circle­class­­52
class­deinitions­­71
classpath­(-cp)­option­­21
clearAll():Boolean­function­­188
clear():Boolean­function­­188
ColorAdjust­effect­­113
Color­class­­107
color­picker

creating 130
comparison­operator­­39
compositable:Boolean­property­­178
conditional­binding­­29
Constructive­Area­Geometry.­See­­CAG
content:Node[]­property­­49
content­property­­49,­92
content:String­property­­61
Control­class­­120,­137
createFromPath(path:Path)­­87
createJComponent()­function­­143
create()­method­­75
create():Node­function­­75
CSS

applications, styling 143-145
paint properties, styling 147
text nodes, styling 146
CSSworking 145

CSS­iles
styles, applying 148-151

CubicCurve­class­­54

301

custom­class
controls 184
textual time progression 183
visual time progression 183

custom­data­model
using, with ListView control 127, 128

custom­interpolators
creating, for animations 100, 101

custom­JavaFX­control
creating 134, 136

custom­node
creating 73, 75
using 75
working 74

CustomNode­class­­75
CustomPaint­class

creating 109, 111
custom­parsing­­212
custom­Swing­controls

wrapping, into JavaFX node 142

D
data

displaying, ListView control used 125, 126
data­binding

animation sequences, driving 104, 106
working 106

Data­class­­223
data­visualization­­186
Deck.add()­function­­138
Deck.add(node:Node)­function­­137
Deck­class

properties 137
using 138
working 137

Deck.frontToBack()­method­­138
default­access­modiier­­73
def­keyword­­25,­26
DelegateShape­class

shapes, morphing 102, 104
delete­operation­­39
deployment­practices,­JavaFX

about 295
ample memory, providing 296
classes, indexing 296
excessive JAR update checks, avoiding 297

JARs, compressing with Pack200 296
JARs, loading 295
JAR versioning 297
signing your application, avoiding 297

Design­Analyser­­287
directories,­JavaFX

about 11
bin 11
docs 11
emulator 11
lib 11
proiles 11
samples 11

DisplacementMap­effect­­113
DistantLighting­effect­­111
docs­directory­­11
DOCUMENT_END­pull­event­­212
Document­Object­Model.­See­­DOM
DOCUMENT_START­pull­event­­212
DOM

about 211
URL 213

DropShadow­effect­­111-116
Duration­type­­82

E
Eclipse

working 228
Eclipse­IDE

JavaFX, setting up 16-19
Effect­API­­116
Effect­class­­112
effect:Effect­property­­111,­112
Ellipse­class­­52
emulator­directory­­11
encodeParameters(Pair[]):String­function­­199
END_ARRAY_ELEMENT­pull­event­­212
END_ARRAY­pull­event­­212
END_ELEMENT­pull­event­­212
END_VALUE­pull­event­­212
Event­Dispatch­Thread­(EDT)­­291
events,­PullParser­class

DOCUMENT_END 212
DOCUMENT_START 212
END_ARRAY 212
END_ARRAY_ELEMENT 212

302

END_ELEMENT 212
END_VALUE 212
START_ARRAY 212
START_ARRAY_ELEMENT 212
START_ELEMENT 212
START_VALUE 212
TEXT 212

Exadel
about 289
URL 289

F
FadeTransition­class­­85,­88
Feed­API

Atom clients, creating 213-216
default parser, overriding 218, 219
RSS clients, creating 213-216

ill:Color­property­­49,­61,­130
ill­property­­107
itHeight­property­­161,­178
itWidth­property­­161,­178
Flamingo­­289
Flickr

URL 159
Flood­effect­­113
Flow­layout­manager­­69
Font­class­­61
Font.font()­function­­64
font:Font­property­­61
Font.getFontNames(familyName:Font.get­

FontNames(familyNameString):Object[]­
method­­64

Font.getFontNames():String[]­method­­64
fonts

locating 64
FontWeight­class­­64
for-loop­expression­­­126
form

creating, JavaFX controls used 120-124
forward(level:Integer)­method­­212
forward()­method­­212
fraction­property­­118
framerate:Number­property­­88
framerate­property­­293
framework­integration­­37

FSEM­­80
Full-Screen­Exclusive­Mode.­See­­FSEM
fullScreen­property­­79,­80
full-screen­theater­mode­­79,­80
functionalities,­JavaFX­Composer

binding 288
data source framework 287
drag-and-drop design 287
states 287

function­type­­32,­33
FXD­ile­­268
FXDLoader

event notiications 283
FXDNode

about 283
objects, loading asynchronously 283

FXDNODE.contentLoaded()­method­­281
FXM­­289
FXZ­ile

about 267, 268
loaded objects, using 277-281

FZDNode
group nodes, accessing 282
non-orphaned nodes, placing 282
objects, accessing 282
objects, loading 282

G
Gartner

URL 222
GaussianBlur­effect­­113,­167­
GET­method­­199
Glow­effect­­114,­167
Google­API­Key

URL 193
Google­Static­Map­API­­193
gradients

cool paint effects, applying 107, 108
Graphics­Viewer­­260
Group­class­­

about 50, 75
working 171

gSlide­element­­130

303

H
HBox­layout­manager­­69,­123,­141
height:Number­property­­49,­163
HLineTo,­path­element­­56
HTML­ile­­240
HTTP

URL 192
HTTP­methods­­192
HttpRequest

data, posting to remote servers 196-199
iles, uploading to servers 200-203
images, downloading 192-195
remote data, accessing 189-191

HttpRequest.headers­property­­203
HttpRequest­object­­186
HttpRequest.start()­function­­199

I
IDE

working, with JavaFX application 228
id:String­property­­124,­141
Image­class­­160,­161,­163
image­effects

creating, with blending 167-171
ImageIO.read()­function­­111
Image­object­­292
images

aspect ratio 163
asynchronous loading issues 162
automatic resizing 163
displaying, with ImageView 159-162
downloading, with HttpRequest 192-195
effects 167
effects, applying 163-167
format support 162
loading, in applications 260-264
loading, with ImageView 159-162
rotating 167
scaling 166
transformations, applying 163-167

ImageView
images, displaying 159-162
images, loading 159-261

ImageView­class­­160,­161
ImageView.itHeight­property­­166

ImageView.itWidth­property­­166
imgView.requestFocus()­function­­264
imgView.rotate­property­­167
impl_getPlatformPaint­function­­110
implicit­coercion­­26
init­block­­24,­25
initialization­block.­See­­init­block
Inkscape

and JavaFX 277
InnerShadow­effect­­114
Insert­operation­­37
installation,­JavaFX­SDK

about 9
Linux, requisites 9
Mac OS X, requisites 9
Open Solaris, requisites 9
steps 9
Windows, requisites 9

interpolation­­98
Interpolator.DISCRETE,­interpolator­­99,­100
Interpolator.EASEBOTH,­interpolator­­98,­100
Interpolator.EASEIN,­interpolator­­98,­100
Interpolator.EASEOUT,­interpolator­­98,­100
Interpolator.LINEAR,­interpolator­­99,­100
InvertMask­effect­­114
items:Object[]­property­­126

J
Java

interface, implementing in JavaFX 36
JavaFX, calling 37
JavaFX code, integrating 35, 36
overview 8

Java­Advanced­Imaging­(JAI)­­162
Java­applet

about 237
AppletStageExtension hooks 248
controlling, JavaScript used 250-254
drag-to-install 245
drag-to-install, implementing 245-247
drag-to-install, working 247
post-installation behavior, controlling 249
unintentional dragging, preventing 249
working 240

java.awt.image.BufferedImage­class­­195

304

JavaFX
about 8
access modiiers 73
Adobe Illustrator graphics, exporting to

269-273
Adobe Photoshop graphics, exporting to

265-267
and Inkscape 277
animation framework 82
application, building 46
calling, from Java 37
classes, creating 22
classes, using 23
code, integrating with Java 35, 36
custom node, creating 73, 75
deployment practices 295
development practices 291-293
directories 11
functions, creating 32, 33
functions, using 32, 33
images, loading 260-264
Java interface, implementing 36
media assets, loading 158
production suite 259
resources, accessing ways 159
Scalable Vector Graphics, exporting to

274-276
sequence loop query 40
sequence operations 39
sequence operators 39
sequence slices 40
setting up, for Eclipse IDE 16-19
setting up, for NetBeans IDE 11-14
string literal, marking as localized 42, 43
string type 41, 42
Swing components, embedding 139-141
Swing control facade, creating 142, 143
uniied programming model 226
variables, declaring 25

JavaFX­animation­framework­­82
javafx.animation­package­­93
javafx.animation.transition­package­­85,­89
JavaFX­APIs­­226
JavaFX­application

arguments, accessing 244
arguments, passing to 242, 243
building 46

building and packaging, with IDE 227, 228
building and packaging, with javafxpackager

229
command-line arguments 244
decomposing 48, 49
JVM arguments 245
packaging, as an applet 237, 239
packaging, with Web Start 236
requisites 46-48
running, in full-screen 79, 80
scene class 49
skinning, with multiple CSS iles 152, 154
styling, CSS used 143-145
window style, controlling 76, 77

JavaFX­application,­decomposing
about 48
nodes 49
scene 49
stage 49

JavaFX­application­framework­­244
javafxc­compiler

JavaFX code, compiling 19-21
options 21

javafxc­compiler,­options
@argiles 21
classpath (-cp) 21
-d 21
sourcepath 21

JavaFX­classes­­36
creating 22
object literal declaration 24
using 23

JavaFX­code
about 240
compiling, javafxc compiler used 19-21
integrating, with Java 35, 36

JavaFX­Composer
functionalities 287

JavaFX­controls
Button 124
CheckBox 124
form, creating 120-124
Label 123
RadioButton 123
TextBox 123

JavaFX­CSS­­145
javafx.data.feed.rss­package­­213

305

javafx.data.pull­package­­204
javafx.ext.swing­package­­120,­139
javafx()­function­­254
JavaFX­functions

binding, to variable 34
creating 32, 33
using 32, 33

javafx.io.http­package­­190
javafx.io.http.URLConverter­class­­192
javafx.io­package­­186
JavaFX-JavaScript­bridge­mechanism

JavaFX types 255
JavaScript, accessing from JavaFX 256, 257
scene graph, accessing 256
using 254

JavaFX­localization
using 42, 43

JavaFX­Mobile
about 285
guidelines 286

JavaFX­NetBeans­plugin
downloading 15

JavaFX­node
custom Swing controls, wrapping 142

JavaFX­packager­tool
about 230
packaging lags 231
tasks 230

javafx.scene.chart­package­­220
javafx.scene.control­package­­120-131
javafx.scene.effect­package­­111-116
javafx.scene.image­package­­160
javafx.scene.input­package­­65
javafx.scene.layout­package­­67
javafx.scene.media­package­­172-179
javafx.scene­package­­74
javafx.scene.paint.Color­package­­48
javafx.scene.paint­package­­107
javafx.scene.Scene­package­­48
javafx.scene.shape­package­­50-102
javafx.scene.shape.Rectangle­package­­48
javafx.scene.text.Font­package­­48
javafx.scene.text­package­­60
javafx.scene.text.Text­package­­48
javafx.scene.transform­package­­83
JavaFX­SDK

about 229

installing 9
installing, on Mac OS 10
installing, on Solaris 10
installing, on Ubuntu 10
installing, on Windows 10

JavaFX­SDK,­installing
about 9
Linux, requisites 9
Mac OS X, requisites 9
Open Solaris, requisites 9
Windows, requisites 9

JavaFX­SDK,­transform­operations
Rotate 84
Scale 84
Shear 84
Translate 84

JavaFX­sequences
creating 37, 38
loop query 40
operations 39
operators 39
slices 40
using 37, 38

JavaFX­software­development­kit.­See­­JavaFX­
SDK

javafx.stage.Stage­package­­48
JavaFX,­String­type

about 41
capabilities 42
working 42

JavaFX­Studio­­289
JavaFX­types

boolean 256
integer 256
number 256
object 256
sequence 256
string 256

Java­Image­Tutorial
URL 196

java.io.:­classes­­188
java.io.InputStream­­188
java.io.OutputStream­­188
Java­IO­Tutorial

URL 189
JavaScript­library­services

graceful degradation 241

306

HTML tags, generating 241
JRE detection 241

JavaScript­Object­Notation.­See­­JSON
java.util.Formatter­class­­42
Java­Virtual­Machine.­See­­JVM
Java­Web­Start

about 236
features 236

javax.imageio.ImageIO­class­­195
JComponent­class­­142
JFXtras­­290
JNLP­ile

about 236, 241
coniguration parameters 236

JNLP­ile­name
overriding 241

jnlp.versionEnabled­attribute­­297
JSON­­186,­204
JVM­­35,­41

K
keyboard­events

capturing 64-67
KeyEvent­class­­66
keyframe­animation­­82
KeyFrame­API

animation, building 93-97
KeyFrame­class­­93
KeyFrame­class,­properties

time:Duration 97
values:KeyValue[] 97

L
Label­control­­123,­141
layout­manager­­69
length:Long­property­­188
letterSpacing:Number­property­­61
lib­directory­­11
Lighting­effect­­111-167
light:Light­property­­113
LinearGradient­method­­108
Line­class­­52
LineTo,­path­element­­56
list():Object[]­function­­188

ListView­control
custom data model, used 127, 128
data, displaying 125, 126

loadImage(url)­method­­195
loadImg()­function­­161-171
loadRssInfo(zip:String)­function­­216
local­storage­coniguration

about 189
storage.enabled = [true | false] 189
storage.limit.domain 189

location­property­­192
location:String­property­­191

M
Mac­OS

JavaFX SDK, installing 10
NetBeans, installing 12

MagneticInterpolator­class­­100,­101
maxLength:Long­property­­188
max:Number­property­­130
media­assets

accessing 158, 159
Media­class­­172-175
MediaController­class­­182
media­playback­component

creating 179-184
media­playback,­JavaFX

platform-dependent implementations
157, 158

platform-independent APIs 157
MediaPlayer

audio, playing 172-174
MediaPlayer­class­­172,­175
mediaPlayer.currentTime­property­­183
mediaPlayer.media.duration­property­­183
MediaView

video, playing 175-178
MediaView­class,­properties

compositable:Boolean 178
preserveRatio:Boolean 178
rotatable:Boolean 178
transformable:Boolean 178

MemeFX­­290
min:Number­property­­130
mod­operator­­183

307

module
about 71
class deinitions 71
function members 71

rules 72
script-level members 71
variables 72
versus script 72

MotionBlur­effect­­113
mouse­events

capturing 64-67
MoveTo,­path­element­­56
mufin­­188
multiple­CSS­iles

applications, skinning 152, 154

N
name:String­property­­188
NetBeans

installing, on Mac OS 12
installing, on Open Solaris 13
installing, on Ubuntu 13
installing, on Windows 12
working 227

NetBeans­IDE
JavaFX, setting up 11-14

NetBeans­Swing­GUI­Builder­­287
new­line­character.­See­­\n
new­operator­­36
Node­class­­76,­163,­223
nodes

about 49
arranging 67, 68

nodes,­Atom
entry 218
extension nodes 218
feed 218

nodes,­RSS
channel 217
extension nodes 217
item 217

node­tree.­See­­nodes

O
object­literal­declaration

about 24
example 24

oblique:Boolean­property­­61
offset­property­­108
On2­­289
onChannel:­function(:Channel):Void­event­

handler­­217
onChannel:­function(:Feed):Void­event­handler­­

218
onForeignEvent:function(:javafx.data.pull.

Event)­event­handler­­217
OnForeignEvent:­function(:javafx.data.pull.

Event)­event­handler­­218
onInput:function(:InputStream)­property­­195
onItem:­function(:Entry):Void­event­handler­­

218
onItem:­function(:tem):Void­event­handler­­217
onKeyPressed:function(:KeyEvent)­property­­

66
onMouseClicked­event­handler­­128
onMousePressed:function(:MouseEvent)­

property­­66
onOutput:function(:OutputStream)­function­­

199
opacity­property­­78
OpenSolaris

NetBeans, installing 13
operations,­JavaFX­sequences

delete 39
union 39

operators,­JavaFX­sequences
comparison 39
reverse 39
size of 39

P
package­access­modiier­­73
packages

about 72
javafx.scene.Scene 48
javafx.scene.shape 57

308

paint­properties
styling, CSS used 147

panel­variable­­123,­130
ParallelTransition­class­­89,­91
parse()­method­­213
Path­API

complex shapes, creating 55, 56
Path­class­­56
Path­class,­elements

ArcTo 56
HLineTo 56
LineTo 56
MoveTo 56
VLineTo 56

PathTransition­class­­85,­87
pause()­function­­88
PauseTransition­class­­92
PerspectiveTransform­effect­­114
PieChart­class­­223
placeholder:Image­property­­162
platform-dependent­implementations­­157,­

158
platform-independent­APIs­­157
player.mediaPlayer.pause()­function­­178
player.mediaPlayer.play()­function­­178
player.mediaPlayer­property­­178
player.mediaPlayer.stop()­function­­178
player.play()­function­­175
player.stop()­function­­175
playFromStart()­function­­88
play()­function­­87,­88,­91
Polygon­class­­53
Polyline­class­­53
postData()­function­­199
POST­method­­197,­199
preserveRatio:Boolean­property­­178
preserveRation:Boolean­property­­163
preserveRatio­property­­161
primitive­types,­JavaFX

Boolean 27
Duration 27
Integer 27
Number 27
String 27

production­suite
about 259, 265
Adobe Illustrator plugin 260

Adobe Photoshop plugin 260
Graphics Viewer 260
SVG File Converter 260

products,­JavaFX
Exadel 289
JFXtras 290
MemeFX 290
On2 289
ReportMill’s DataBox 290
WidgetFX 289

proiles­directory­­11
progress

showing, progress controls used 131-133
ProgressBar­control­­131
progress­controls

progress, showing 131-133
ProgressIndicator­control­­131,­133
progress:Number­property­­133
proportional:Boolean­property­­108
protected­access­modiier­­73
pseudo-class­­152
public­access­modiier­­73
public-init­access­modiier­­73
public-read­access­modiier­­73
public­static­void­main(String[]­args)­method­­

34
PullParser­API

RESTful clients, building 204-211
PullParser­class­­211

custom parsing 212

Q
QuadCurve­class­­54

R
RadialGradient­method­­108
RadioButton­control­­123,­141
radius­property­­52
rate:Number­property­­88
readable:Boolean­property­­188
Rectangle.broad{}­selector­­152
Rectangle­class­­52
Rectangle­class,­properties

arcHeight 52
arcWidth 52

rectangle­node­­50

309

Relection­class­­117,­118
Relection­class,­properties

bottomOpacity 118
fraction 118
topOffset 118
topOpacity 118

Relection­effect­­167
visual appeal, adding 116, 117
working 117

repeatCount:Number­property­­87
repeatCount­property­­88,­91
ReportMill’s­DataBox­­290
requestFocus()­method­­66
Resource­class­­188
Resource­class,­properties

length:Long 188
maxLength:Long 188
name:String 188

resource­object­­187
resource.openInputStream()­function­­188
resource.openOutputStream()­function­­188
RESTful­clients

building, with PullParser API 204-211
REST-style­development­­186
reverse­operator­­39
rotatable:Boolean­property­­178
Rotate­transformation­­83,­84
RotateTransition­class­­85,­88
rSlide­element­­130
RSS

about 186
creating, Feed API used 213-216
handling 217

run()­function­­34,­72,­229,­291

S
samples­directory­­11
Scalable­Vector­Graphics­(SVG)

exporting, to JavaFX 274-276
Scale­transformation­­84
ScaleTransition­class­­85,­87
scaleX­transformation­­84
scaleY­transformation­­84
Scene­class­­48,­49
Scene­class,­properties

content:Node[] 49

ill:Color 49
height:Number 49
width:Number 49

scene­graph­­49
Scene.lookup(id:String)­function­­141
Scene.lookup(id:String)­function­­162
Scene.lookup(id:String):Node­function­­124
scene:Scene­property­­49
Scene.stylesheets­property­­155
script

modularization 70, 71
organizing, into packages 72
rules 72
versus module 72

script-level­members­­71
seek(element:Object,­level:Integer)­method­­

212
seek(element:Object)­method­­212
seek()­method­­212
selectedIndex­property­­126
selectedItem­property­­126
selectors,­JavaFX­CSS

.broad:hover{} 152
Rectangle.broad{} 152
Text#titleText{} 152

SepiaTone­effect­­114,­167
sequence­loop­query,­JavaFX­­40
sequence­operations,­JavaFX

delete 39
insert 39
union 39

sequence­operators,­JavaFX
comparison 39
reverse 39
sizeof 39

sequence­projection­­40
sequence­slices,­JavaFX

sequence projection 40
SequentialTransition­class­­91,­92
Series­class­­222
Shadow­effect­­114
Shape­API

circle, drawing 52
ellipse, drawing 52
line, drawing 52
rectangle, drawing 52

310

shapes, creating 50-52
working 52

Shape­API,­classes
CubicCurve 54
QuadCurve 54

ShapeDelegate.shape­property­­104
ShapeIntersect­class­­57
ShapeIntersect­operation­­60
shape:Shape­property­­104
ShapeSubtract­class­­57
ShapeSubtract­operation­­60
Shear­transformation­­84
shiftBackToFront()­function­­138
shiftFrontToBack()­function­­138
SimpleInterceptor­class­­100
SimpleInterpolator­class­­102
sizeof­operator­­39
slices,­JavaFX­sequences

sequence projection 40
Slider­control­­166

color picker, creating 130
numeric values, inputting 128-130
Slider controlworking 130

smooth­property­­292
Solaris

JavaFX SDK, installing 10
sourcepath­option­­21
spacing­property­­69
Stack­layout­manager­­69
Stage­class­­48
Stage­class,­properties

height:Number 49
scene:Scene 49
title:String 49
visible:Boolean 49
width:Number 49
x:Number 49
y:Number 49

StageStyle.DECORATED­style­­78
StageStyle.UNDECORATED­style­­78
START_ARRAY_ELEMENT­pull­event­­212
START_ARRAY­pull­event­­212
START_ELEMENT­pull­event­­212
START_VALUE­pull­event­­212
stop()­function­­88
stops:Stop[]­property­­108

Storage­API
about 185
data, storing on user’s device 187, 188
working 187

Storage­API,­classes
Resource class 188
Storage class 187

Storage­class­­187,­188
Storage­class,­functions

clearAll():Boolean 188
clear():Boolean 188
list():Object[] 188

storage.enabled­=­[true­|­false]­coniguration­­
189

storage.limit.domain­coniguration­­189
storage­organization­­188
storage.properties­ile­­189
Storage.source­property­­187
Stroke:Color­property­­61
strokeWidth:Number­property­­61
styleClass­property­­151,­152
style­property­­76,­77,­145
style:String­property­­145
surfaceScale­property­­113
SVG­File­Converter­­260
SwingButton­class­­141
SwingCheckBox­class­­141
Swing­components

embedding, in JavaFX 139-141
SwingComponent.wrap()­function­­142
Swing­control­facade

creating, JavaFX used 142, 143
SwingLabel­class­­141
SwingRadioButton­class­­141
SwingTextField­class­­141

T
textAlignment­property­­63
TextBox­control­­123,­141
Text­class

letter shapes, drawing 60, 61
Text­class,­properties

content:String 61
ill:Color 61
font:Font 61
letterSpacing:Number 61

311

\n 63
oblique:Boolean 61
Stroke:Color 61
wrappingWidth:Number 63

Text­component­­48
Text­effect

creating 114
working 115

text­node
styling, CSS used 146

TextOrigin.BASELINE­option­­62
TextOrigin.BOTTOM­option­­63
TextOrigin­class­­62
TextOrigin­class,­options

TextOrigin.BASELINE 62
TextOrigin.BOTTOM 63
TextOrigin.TOP 62

textOrigin:TextOrigin­property­­62
TextOrigin.TOP­option­­62
TEXT­pull­event­­212
Text#titleText{}­selector­­152
textual­time­progression­­183
Tile­layout­manager­­69
Timeclass­class,­functions

pause() 88
play() 88
playFromStart() 88
stop() 88

Timeclass­class,­properties
autoReverse 88
framerate:Number 88
rate:Number 88
repeatCount 88
time:Duration 88

time:Duration­property­­88,­97
Timeline­class

using, as timer 99
time­property­­99
title:String­property­­49
ToggleGroup­instance­­123
toggleGroup:ToggleGroup­property­­123
topOffset­property­­118
topOpacity­property­­118
toString()­function­­127
transformable:Boolean­property­­178
Transform.afine()­method­­277

ransformation­API
shapes, modifying 82, 83
working 84

Transform.rotate()­function­­84
Transform.scale()­function­­84
Transform.shear()­function­­84
transforms:Transform[]­property­­84,­178
Transform.translate()­function­­84
transition­animation­­82
Transition­API

animation, composing 89-91
simple animation, creating 85-87

Translate­transformation­­83,­84
TranslateTransition­class­­85-138
translateX­transformation­­84
translateY­transformation­­84
transparent­style­­77
trigger

about 31
example 32
using 32

tween­keyword­­98
type:ArcType­property­­54
type­integration­­37

U
Ubuntu

JavaFX SDK, installing 10
NetBeans, installing 13

uniied­programming­model­­226
union­operation­­39
update()­function­­252,­255
ur:String­property­­110
user­input­events­­46

V
value:Number­property­­130
values:KeyValue[]­property­­97
variable­scope,­JavaFX

about 27
instance level 28
local level 28
script level 27

variables,­JavaFX
binding, to code block 30
binding, to condition 29

312

binding, to function 30, 34
binding, to object literal 31
binding, to variables 29
declaring 25
declaring, ways 26
explicit type declaration 26
implicit coercion 26
instance variables 28
local variables 28
script variables 27
triggers 31
updating, binding used 28

var­keyword­­25,­26
VBox­layout­manager­­69,­123,­141
video

playing, with MediaView 175-178
visible:Boolean­property­­49
visual­time­progression­­183
VLineTo,­path­element­­56

W
What­You­See­Is­What­You­Get­tool.­See­­WYSI-

WYG­tool
where­clause­­40
WidgetFX

about 289
URL 289

width:Number­property­­49,­163
Windows

JavaFX SDK, installing 10
NetBeans, installing 12

window­style,­JavaFX­application
controlling 76, 77
opacity, controlling 78

wrappingWidth:Number­property­­63
writeable:Boolean­property­­188
WYSIWYG­tool­­287

X
XmlHttpRequest­object­­186
x:Number­property­­49

Y
Yahoo­‘­s­weather­services

URL 213
y:Number­property­­49

Z
Zillow­Real­Estate­engine

URL 204

Thank you for buying
JavaFX 1.2 Application
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it irst before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

JSF 2.0 Cookbook
ISBN: 978-1-847199-52-2 Paperback: 396 pages

Over 100 simple but incredibly effective recipes for
taking control of your JSF applications

1. Discover JSF 2.0 features through complete
examples

2. Put in action important JSF frameworks, such
as Apache MyFaces Core, Trinidad, Tomahawk,
RichFaces Core, Sandbox and so on

3. Develop JSF projects under NetBeans/Glassish
v3 Prelude and Eclipse/JBoss AS

4. Part of Packt's Cookbook series: Each recipe is
a carefully organized sequence of instructions to
complete the task as eficiently as possible

NetBeans Platform 6.9
Developer's Guide
ISBN: 978-1-849511-76-6 Paperback: 288 pages

Create professional desktop rich-client Swing
applications using the world's only modular Swing
application framework

1. Create large, scalable, modular Swing applications
from scratch

2. Master a broad range of topics essential to have
in your desktop application development toolkit,
right from conceptualization to distribution

3. Pursue an easy-to-follow sequential and tutorial
approach that builds to a complete Swing
application

Please check www.PacktPub.com for information on our titles

MooTools 1.2 Beginner's
Guide
ISBN: 978-1-847194-58-9 Paperback: 280 pages

Learn how to create dynamic, interactive, and responsive
cross-browser web applications using this popular
JavaScript framework

1. Learn how to build super-charged web forms

2. Learn how to write powerful and lexible
cross-browser code

3. Make your web applications more dynamic and
user-interactive with AJAX

4. Packed with examples that will show you step by
step the most important aspects of getting started
with MooTools

RESTful Java Web Services
ISBN: 978-1-847196-46-0 Paperback: 256 pages

Master core REST concepts and create RESTful web
services in Java

1. Build powerful and lexible RESTful web services
in Java using the most popular Java RESTful
frameworks to date (Restlet, JAX-RS based
frameworks Jersey and RESTEasy, and Struts 2)

2. Master the concepts to help you design and
implement RESTful web services

3. Plenty of screenshots and clear explanations to
facilitate learning

Please check www.PacktPub.com for information on our titles

Apache MyFaces 1.2 Web
Application Development
ISBN: 978-1-847193-25-4 Paperback: 408 pages

Building next-generation web applications with JSF
and Facelets

1. Build powerful and robust web applications with
Apache MyFaces

2. Reduce coding by using sub-projects of MyFaces
like Trinidad, Tobago, and Tomahawk

3. Update the content of your site daily with ease by
using Facelets

4. Step-by-step and practical tutorial with lots
of examples

BlackBerry Java Application
Development
ISBN: 978-1-849690-20-1 Paperback: 368 pages

Build and deploy powerful, useful, and professional Java
mobile applications for BlackBerry smartphones, the
fast and easy way.

1. Develop professional, rich, and smart Java
applications using BlackBerry SDK

2. Discover the powerful components provided by
the SDK to build a powerful user interface with a
common look and feel

3. Explore the complex, but important, topic of
network communications

Please check www.PacktPub.com for information on our titles

Google Web Toolkit GWT
Java AJAX Programming
ISBN: 978-1-847191-00-7 Paperback: 248 pages

A practical guide to Google Web Toolkit for creating AJAX
applications with Java, fast.

1. Create rich Ajax applications in the style of Gmail,
Google Maps, and Google Calendar

2. Interface with Web APIs create GWT applications
that consume web services

3. Completely practical with hands-on examples and
complete tutorials right from the irst chapter

Flex 3 with Java
ISBN: 978-1-847195-34-0 Paperback: 304 pages

Develop rich internet applications quickly and easily
using Adobe Flex 3, ActionScript 3.0 and integrate with
a Java backend using BlazeDS 3.2

1. A step-by-step tutorial for developing web
applications using Flex 3, ActionScript 3.0,
BlazeDS 3.2, and Java

2. Build eficient and seamless data-rich interactive
applications in Flex using a combination of MXML
and ActionScript 3.0

3. Create custom UIs, Components, Events, and Item
Renders to develop user friendly applications

4. Build an end-to-end Flex e-commerce application
using all major features of Flex covered
throughout the book

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1:
Getting Started with JavaFX
	Introduction
	Installing the JavaFX SDK
	Setting up JavaFX for the NetBeans IDE
	Setting up JavaFX for the Eclipse IDE
	Using javafxc to compile JavaFX code
	Creating and using JavaFX classes
	Creating and using variables in JavaFX
	Using binding and triggers to update
	variables
	Creating and using JavaFX functions
	Integrating your JavaFX code with Java
	Creating and using JavaFX sequences
	Working with JavaFX string

	Chapter 2:
Creating JavaFX Applications
	Introduction
	Building a JavaFX application
	Drawing simple shapes
	Creating complex shapes using Path
	Creating shapes with constructive area
	geometry
	Drawing letter shapes using the Text class
	Handling user input
	Arranging your nodes on stage
	Making your scripts modular
	Creating your own custom node
	Controlling your application's window style
	Going full-screen

	Chapter 3:
Transformations, Animations, and Effects
	Introduction
	Modifying shapes with the Transformation
	API
	Creating simple animation with the
	Transition API
	Composing animation with the
	Transition API
	Building animation with the KeyFrame API
	Creating custom interpolators for animation
	Morphing shapes with the DelegateShape
	class
	Using data binding to drive animation
	sequences
	Applying cool paint effects with gradients
	Creating your own customized Paint
	Adding depth with lighting and shadow
	effects
	Creating your own Text effect
	Adding visual appeal with the Reflection
	effect

	Chapter 4:
Components and Skinning
	Introduction
	Creating a form with JavaFX controls
	Displaying data with the ListView control
	Using the Slider control to input numeric
	values
	Showing progress with the progress
	controls
	Creating a custom JavaFX control
	Embedding Swing components in JavaFX
	Styling your applications with CSS
	Using CSS files to apply styles
	Skinning applications with multiple CSS files

	Chapter 5:
JavaFX Media
	Introduction
	Accessing media assets
	Loading and displaying images with
	ImageView
	Applying effects and transformations
	to images
	Creating image effects with blending
	Playing audio with MediaPlayer
	Playing video with MediaView
	Creating a media playback component

	Chapter 6:
Working with Data
	Introduction
	Saving data locally with the Storage API
	Accessing remote data with HttpRequest
	Downloading images with HttpRequest
	Posting data to remote servers with
	HttpRequest
	Uploading files to servers with HttpRequest
	Building RESTful clients with the PullParser
	API
	Using the Feed API to create RSS/Atom
	clients
	Visualizing data with the JavaFX chart API

	Chapter 7:
Deployment and Integration
	Introduction
	Building and packaging your app with an IDE
	Building and packaging your app with
	javafxpackager
	Packaging your app to be Web Start(ed)
	Packaging your app as an applet
	Passing arguments to JavaFX applications
	Making your applets drag-to-install
	Controlling JavaFX applets from JavaScript

	Chapter 8:
The JavaFX Production Suite
	Introduction
	Loading multiple images dynamically
	Exporting Adobe Photoshop graphics
	to JavaFX
	Exporting Adobe Illustrator graphics
	to JavaFX
	Exporting Scalable Vector Graphics (SVG)
	to JavaFX
	Using objects loaded from FXZ files

	Appendix A:
Mobile JavaFX
	Appendix B:
JavaFX Composer
	Appendix C:
JavaFX Products and Frameworks
	Appendix D:
Best Practices for Development
	Appendix E:
Best Practices for Deployment
	Index

